Monitoring a solar installation by
tapping into a SunPower PVS5 or
PVS6

Updated (11/10/25): IMPORTANT UPDATE - Information about newer firmware
requiring authentication, and a new local monitoring APl from SunStrong. See thec
section immediately after the introduction.

Updated (10/5/25): Updated to an improved automatic WiFi reconnect script and a fix

for carrier loss.
Updated (9/21/25): Updated to include automatic WiFi reconnect script.

Updated (9/16/25): Updated to reflect the use of a static IP as newer versions
(SunStrong) of PVS firmware refuse to renew DHCP offers.

Updated (5/29/24): Documented new knowledge about other open ports, add
configuration to haproxy for those ports, included a reference to “sunpower-ess-
monitor” (monitors a Sunpower ESS system and publishes to an MQTT broker). Also
included information about a known and confirmed firmware problem with logging
storage filling up and causing reporting to Sunpower to stop.

Updated (5/25/2023): Documented Pi Zero W works as well. Updated configuration of
haproxy to include possible output compression. Updated instructions to set
timezone, locale and hostname for Pi.

Updated (1/27/2023): Some additional photos and explanation of PVS6 versions
without Ethernet.

Updated (12/25/2022): Newer PVS6 models without Ethernet ports were introduced in
2022. | have added documentation for using dongles to make Ethernet available on
those models.

Updated: | have been working with an owner with a SunVault ESS battery system. The
networking is slightly different, and the device details amd cabinets are as well. This
update adds additional devices seen by the PVS6 and the below documents this as

best as currently known.

DISCLAIMER:

Everything provided/stated in this document is the result of internet-based search results,
Sunpower Documentation, and research by the author and acknowledged contributors.

NOTHING IN THIS DOCUMENT IS CONSIDERED TO BE A DEFINITIVE REFERENCE OR
GUIDE, AND ANY ACTIONS YOU TAKE BASED ON THIS INFORMATION ARE YOUR OWN
RESPONSIBILITY. THE SYSTEMS IN QUESTION CONTAIN CONNECTIONS FOR HIGH
VOLTAGE AND HIGH POWER ELECTRONICS AND YOU SHOULD BE AWARE OF THAT,
TAKE ALL NECESSARY PRECAUTIONS FOR WORKING AROUND THOSE, INCLUDING
SWITCHING OFF COMPONENTS, AND YOU SHOULD TAKE SAFETY MEASURES AND BE
AWARE OF ASSOCIATED RISKS (INCLUDING DEATH) SHOULD YOU FAIL TO DO SO.
THE AUTHOR(S) DO NOT ASSUME ANY RESPONSIBLITY OR LIABILITY! CONSULT
YOUR SYSTEM DOCUMENTATION FOR ANY ADVERSE IMPACTS TO YOUR SYSTEM’S
WARRANTY.

Introduction

The following describes how to set up a way to issue HTTP commands to a SunPower PVS5
or PVS6 monitoring system. This information was gathered from several different places on the
Internet but is presented here in an attempt to provide a single comprehensive document. The
most notable sources used were:

= Monitoring_a SunPower Solar System (https://blog.gruby.com/2020/04/28/monitoring-a-s

unpower-solar-system/)

https://blog.gruby.com/2020/04/28/monitoring-a-sunpower-solar-system/
https://blog.gruby.com/2020/04/28/monitoring-a-sunpower-solar-system/

= Describes Scott's experience, and configuring a Raspberry Pi3, and how he uses

Home Assistant with Grafana to build a dashboard

SunPower PVS5x/PVS6 Notes (https://github.com/ginoledesma/sunpower-pvs-exporter/

blob/master/sunpower pvs notes.md)

= Documents using a Raspberry Pi3 as a bridge to the PVS5x or PVS6 system as well

as some of the APl commands (with a few errors)
= The GitHub repository also contains some code

Sunpower PVS6 Installation Instructions (https://us.sunpower.com/sites/default/files/sun

power-pv-supervisor-6-installation-instructions-531566-reva_0.pdf). This is for the (older)

model equipped with Ethernet ports.

Sunpower PVS6 Residential Installation Instructions (https://fccid.io/YAW539848-7/User-
Manual/Users-Manual-rev-6022499.pdf). This is for the newer model (2022) not equipped

with Ethernet ports, but with USB ports that accept certain dongles..

https://us.sunpower.com/sites/default/files/sunpower-pvs5x-install-and-quick-start-
guide-522351_0.pdf

Commissioning EquinoxTM Systems using WiFi (https://us.sunpower.com/sites/default/fil

es/tech-note-commissioning-equinoxtm-systems-using-wifi-534241-004 0.pdf)

Equinox Installation Support (https://us.sunpower.com/support/install/equinox)

Conext XW Pro Hybrid Inverter (https://www.se.com/ww/en/product-range/66297-conext

-XW-pro/?parent-subcategory-id=7010&filter=business-7-solar-and-energy-storage#over

view)

Conext Battery Monitor (https://www.se.com/ww/en/product-range/65504-conext-batter

y-monitor/?parent-subcategory-id=7040&filter=business-7-solar-and-energy-storage#ov

erview)

Conext Gateway (https://solar.se.com/us/en/product/conext-gatewayy/). This is listed as a

discontinued product but may still contain information relevant to its replacement.

Thanks to Dean Ott who confirmed to me that he has all this working with a PVS5 system
(he uses two cables: one for outbound access for the PVS5 (instead of WiFi), and one to
a Raspberry inside his wiring closet).

Thanks to Phill West who owns a system with a SunVault ESS battery system.

https://www.raspberrypi.com/products/
https://www.home-assistant.io/
https://grafana.com/
https://github.com/ginoledesma/sunpower-pvs-exporter/blob/master/sunpower_pvs_notes.md
https://github.com/ginoledesma/sunpower-pvs-exporter/blob/master/sunpower_pvs_notes.md
https://www.raspberrypi.com/products/
https://us.sunpower.com/sites/default/files/sunpower-pv-supervisor-6-installation-instructions-531566-reva_0.pdf
https://us.sunpower.com/sites/default/files/sunpower-pv-supervisor-6-installation-instructions-531566-reva_0.pdf
https://fccid.io/YAW539848-Z/User-Manual/Users-Manual-rev-6022499.pdf
https://fccid.io/YAW539848-Z/User-Manual/Users-Manual-rev-6022499.pdf
https://us.sunpower.com/sites/default/files/sunpower-pvs5x-install-and-quick-start-guide-522351_0.pdf
https://us.sunpower.com/sites/default/files/tech-note-commissioning-equinoxtm-systems-using-wifi-534241-004_0.pdf
https://us.sunpower.com/sites/default/files/tech-note-commissioning-equinoxtm-systems-using-wifi-534241-004_0.pdf
https://us.sunpower.com/support/install/equinox
https://us.sunpower.com/support/install/equinox
https://www.se.com/ww/en/product-range/66297-conext-xw-pro/?parent-subcategory-id=7010&filter=business-7-solar-and-energy-storage#overview
https://www.se.com/ww/en/product-range/66297-conext-xw-pro/?parent-subcategory-id=7010&filter=business-7-solar-and-energy-storage#overview
https://www.se.com/ww/en/product-range/65504-conext-battery-monitor/?parent-subcategory-id=7040&filter=business-7-solar-and-energy-storage#overview
https://www.se.com/ww/en/product-range/65504-conext-battery-monitor/?parent-subcategory-id=7040&filter=business-7-solar-and-energy-storage#overview
https://solar.se.com/us/en/product/conext-gateway/
https://solar.se.com/us/en/product/conext-gateway/

The basic reason for even wanting to bother with all this is the finding that the SunPower
mobile app or website that is offered to customers is extremely limited in functionality. It only
offers insights into current solar production, current consumption (only if a metering kit was
installed which oftentimes is not the case, so you would have to ask for it), and some historical
graphs showing kWh produced or power output. There is no information about individual
system components regarding their functional state, and no detailed performance metrics.
Additionally, it appears that the SunPower data on the app or website may only be updated in
less than real-time.

Using the approach described here, more detail and data with higher frequency are available. |
first describe the basic functioning of the PVS system and how one can "tap" into it, and then
discuss the specific solution using a Raspberry Pi3 (and, later, a Pi Zero W). Finally, | document
the API that becomes available using this approach. The API can be used by custom code you
or somebody else writes. One such example is an integration called SunPower, for Home
Assistant (https://github.com/krbaker/hass-sunpower).

New Sunstrong related information (11/10/25)

Ever since the SunPower bankruptcy and subsequent acquisition of some assets by
SunStrong, there has been some uncertainty as to how long the approaches described here
would remain valid. In particular because the newer SunStrong application is more limited
unless you pay for a subscription, and because it was unknown whether SunStrong would
perhaps change the firmware to block the kind of monitoring described here.

| discovered a few weeks ago that things have, indeed, changed. As | write this my PVS6 is
(still) on firmware version 2025.06, but others have reported newer versions. Along with that
came reports of monitoring via the commands described here encountering 403 (Not
Authorized) errors.

Some research uncovered what happened:

1. Sunstrong introduced a new API for local monitoring that became available in versions
after 2025.06

2. This new API requires an authentication step before the API can be used

https://github.com/krbaker/hass-sunpower
https://github.com/krbaker/hass-sunpower

3. The old API still works, but...

4. Perhaps inadvertently, the old API (which runs on the same web server as the new one),
now also requires that same authentication step.

Below | will give some information about the new API, and the authentication method that
works for both old and new APIs. | will also point to available plugins for Homeassistant the
should allow you to work with old or new APls.

The new local monitoring API

Sunstrong implemented a new local monitoring API on top of a facility they introduced a while
ago, called “var server”. Varserver is a basic key/value store and, using this new API, it can be
interrogated to obtain various telemetry values. Sunstrong has documented varserver and this
new API, and has also created a Python library for interacting with this new API.

It should also be noted that the PVS will now listen for these API requests on the IP address of
the PVS6 on your local network. In other words: To access this APl you no longer need any of

the solutions described here using a Raspberry Pi, or equivalent. | have not been able to tests

this myself as | am still on old firmware. That said, proxying through the Pi should also still

work.

While this new API and the fact that a Raspberry Pi is no longer needed might make
things a lot simpler, you might still want to look through the rest of this document to
learn more specific information. Unless you will only be using a Homeassistant plugin,
that information might still come in very handy.

This new APl is officially documented. The “old” one was never officially documented, although
a fair amount of unofficial documentation can be found in this document.

The new APl is, documented in the open source and public GitHub repository created by
SunStrong: https://github.com/SunStrong-Management/pypvs/blob/main/doc/LocalAPl.md.

Another file, found at https://github.com/SunStrong-Management/pypvs/blob/main/doc/dl_cqgi.

md states which parts of the legacy dl_cgi interface are still supported, but also makes it clear

https://github.com/SunStrong-Management/pypvs/blob/main/doc/LocalAPI.md
https://github.com/SunStrong-Management/pypvs/blob/main/doc/dl_cgi.md

that:

= Authentication is now required
= This API should really not be used anymore

= This APl may disappear

Two more files describe the varserver endpoints that are available for PVS5 and PVS6:

= https://github.com/SunStrong-Management/pypvs/blob/main/doc/varserver-variables-pu

blic-pvs5.csv

= https://qgithub.com/SunStrong-Management/pypvs/blob/main/doc/varserver-variables-pu

blic-pvs6.csv

The PyPVS Python library is described in https://github.com/SunStrong-Management/pypvs/bl

ob/main/README.md and the source code can be found in that repository as well, along with

examples.
Authentication

Authentication is now required for most of the still supported old API, and much of the new
one. The basic method requires you to know that last five characters of your device serial
number.

NOTE: If your firmware is newer than 2025.06 this means that without modified
software in Homeassistant or whatefver other solution you may have been using,

things will now fail with a 403 error!

Details can also be found in the main documentation, but it boils down to the following steps:

1. Form a string concatenating the text “ssm_owner”, a colon, and the last five characters
of your serial number.

2. Put that string in base64 encoded format

https://github.com/SunStrong-Management/pypvs/blob/main/doc/varserver-variables-public-pvs5.csv
https://github.com/SunStrong-Management/pypvs/blob/main/doc/varserver-variables-public-pvs6.csv
https://github.com/SunStrong-Management/pypvs/blob/main/README.md

3. Make a GET request to the endpoint https://<ip address>/auth?login while
providing a header to the request "Authorization: basic $auth" where $auth is the

base64 encoded string from above.

4. The response will not include a cookie named session that must be included in all

subsequent API requests.
Swagger (old API)

Since writing this document, | have found that one can now obtain a Swagger file for the “old”
api.

A Swagger file, now formally known as an OpenAPI| Specification (OAS) file, is a
language-agnostic, machine-readable, and human-readable description of a RESTful
API. It serves as a blueprint or contract for your API, detailing its functionality and how
to interact with it.

The file can be downloaded using the URL http://<your pi3 IP address on WiFi>cgi-
bin/swagger. json (if you have followed instructions here). You can then read it for more

information, or import it in OpenAPI compatible tools, such as RapidAPI. These tools will then
allow for quick experimentation with the API.

Homeassistant plugins

| don’t know if the “original” Homeassistant integration from works with the new authorization,
but old API, or not (could not test). However | found two other plugins that look like they should
do the job.

= The first one is published by SunStrong and uses the new Python library and, as far as |
can tell, will only work if you have the newer firmware: https://github.com/SunStrong-Ma
nagement/pvs-hass

= The second one claims to work, universally and transparently, with both old and new
APIs. Presumably, but not tested by my, even handles the old API without authentication
needs, as well: https://github.com/smcneece/ha-esunpower

https://github.com/SunStrong-Management/pvs-hass
https://github.com/smcneece/ha-esunpower

Other Resources

If you would like to do some more “manual” experimentation, | have the following resources:

= Use a program such as RapidAPI, or equivalent, perhaps even curl (more manual and
more involved, but works nonetheless).

= Use this shell script, or modifications of it: https://gist.github.com/koleson/d54e0cd1f3bc
e3aedf13be005df99abb

The PVS6 system

What follows may not precisely describe how things are for the PVS5 series. Although it seems
very similar concerning the functionality described here, | don't have one so could not test it
(but I have confirmation things work basically the same). The system is a separate box (except
in ESS-based installations), typically installed near the (sub)panel where the wiring from the
solar array is hooked up. Inside it generally contains connections to one or two circular
magnets/coils, called Current Transformer (CT) that are installed around the PVS wires so that
the energy produced can be monitored. There may also be a set around the incoming wires
from the utility (a so-called metering kit). The latter is oftentimes omitted, unless you have
battery storage, in which case it is needed to properly decide where to route energy produced
by the PV system (i.e. to battery and/or grid). The system will be powered via its private
breaker circuit.

The system has several /O ports inside (remove front cover). Most notably there are two
Ethernet ports labeled WAN/LAN2 and LAN1, and 4 USB-A ports. Also available is a wireless
radio (for WiFi access), and a cellular system, which will most of the time not be equipped with
a SIM unless you have cellular as your only option to connect to the Internet for monitoring by,
and uploading to SunPower. Finally, there is also a facility to access the PVS monitoring
system through PLC (Power Line Communication). The latter is also how the monitoring
system communicates with all the microinverters for the panels. The USB ports do not appear
to be used and probably come as part of a fairly generic motherboard used inside. They can
come in handy though, as you will see later.

https://gist.github.com/koleson/d54e0cd1f3bce3aedf13be005df99abb
https://en.wikipedia.org/wiki/Current_transformer

In the most basic setup, the PVS monitoring system needs Internet access to communicate
with SunPower's cloud. In many, if not most, customer installations this is achieved by
connecting to the customer's WiFi network. Where this is not possible, or not desirable, an
Ethernet cable from the WAN port to the customer network is another option (but often a
cumbersome one as the panel will likely be outside, so a cable will have to be routed to a
suitable location inside). In both cases the PVS monitoring system will act as a DHCP client on
the customer network to obtain its IP address, although it is also possible, using installer
access via the specialized mobile app, to configure a static IP address. Generally, it is
advisable to leave things as DHCP but configure your home router or WiFi with a statically
reserved DHCP address so the box always gets the same IP address. Failing the above two
solutions a PLC-based connection is the next option, and finally, there is cellular. Only the latter
will not make the PVS monitoring system available on the customer network and everything
discussed here cannot be used.

While the WAN port is for wired communication between the PVS monitoring system and the
customer network, the LAN port is meant for the installer of the system. A laptop can be
plugged into it directly. To support this mode of operation, the PVS monitoring system runs a
DHCP server on this port, so the laptop can obtain a suitable IP address, routing information
(the PVS monitoring system is the gateway), and DNS (so that a lookup of
www.sunpowerconsole.com will work). The port presents a network with address
172.27.153.0/24 (netmask 255.255.255.0) and the PVS monitoring system will be at the
gateway address supplied by DHCP (this seems to always be 172.27.153.1). The laptop will

get a suitable address on the same network.

The black port is LAN1, and the yellow port is WAN/LAN2! Raspberry powered from USB port
1. Using short cables, plenty of space.

NOTE: | have reports of a newer version of the PVS6 being used. This newer version lacks the
two ethernet ports. Its insides look like this:

http://www.sunpowerconsole.com/

Note that the traditional ethernet ports are no longer there, but there are two USB ports that
are also labeled LAN and WAN respectively. Of course, USB does not equal ethernet so the
suspicion is that the USB ports can accept ethernet adapters, but so far those that have tried
to use ethernet this way have not been successful.

NOTE: It seems that the ports will indeed take USB Ethernet adapters, but only
certain brands/models will work.

The above picture is from the standalone PVS6, a newer version, without Ethernet ports. Here
is a picture inside the “modern” ESS installation of the same PVS6, but exposing more of the
inside:

Visible here on the right side of the green PCS, from top to bottom (corresponding with right to
left in the picture above it):

= Power adapter port

= USB port (nothhing plugged in here)

= USB port with Ethernet dongle plugged in (ostensibly for WAN/Internet access). This one
is optional

= USB port with what appears to be a second dongle plugged in (for connection to the ESS

Gateway). This one is required

= RS-485 cable (looks like Ethernet, but it is not Ethernet) for serial communication with
Inverters and ESS sub systems

= D-AUX port, nothing plugged in

The laptop tapping into this port is the legacy way of configuring the system. These days
installers can use a mobile app available from the iOS app store, and | assume there is also an
Android version. The app initially uses BlueTooth to connect. It will obtain the name of a WiFi
network presented by the system and subsequently, your mobile device will need to be
configured to connect to that network to access the needed functionality. While you can

download this app yourself, soon after you start it it requires you to login to the SunPower
portal with a qualified installer account. An account that they presumably will not give to an
end user.

| also found a https://us.sunpower.com/sites/default/files/tech-note-commissioning-

equinoxtm-systems-using-wifi-534241-004_0.pdf (from August 2019) detailing how to connect

to the PVS6 using laptop and WiFi. Apparently during commisioning the box provides a WiFi
network. Using the serial number found on a sticker(s) on the box, numbering its characters
from left to right, starting at 1 (we’ll use sample ZT190585000549A6185):

= Characters 5, 6, followed by last 3 characters appended to “SunPower” will be the SSID
to connect to (Example: ‘SunPower0518)

= Characters 3, 4, 5, 6 followed by last four characters will be the password to use
(Example: 19056185)

This WiFi network is apparently available for four hours after power up unless commisioning is
complete. If commisioning is started in that window, it will stay active. If you go beyond the
window, you can reboot (power cycle) the PVS6 and a new 4 hour window will start.

NOTE: It appears that, at least in early 2024 on my PVS6, this network is no longer
deactivated after 4 hours. This is likely to provide mobile phone access for installers
without requiring them to power cycle the PVS system.

The way the LAN port works is that the monitoring system runs a web server, which listens on
port 80 (standard http port) and 443 (standard SSL port). If one accesses
www.sunpowerconsole.com from a browser on the laptop you will see something like this:

Unless you can see this, something is wrong with your setup! Other urls available:

= http://www.sunpowerconsole.com/#/summary: leads to (step 5 of 6) summary of status
page

https://us.sunpower.com/sites/default/files/tech-note-commissioning-equinoxtm-systems-using-wifi-534241-004_0.pdf
http://www.sunpowerconsole.com/
http://www.sunpowerconsole.com/#/summary

= http://www.sunpowerconsole.com/#/landing: leads to the landing page

= http://www.sunpowerconsole.com/#/firmware: checks for an applies firmware update

= http://www.sunpowerconsole.com/#/network/config: leads to network setup page

= http://www.sunpowerconsole.com/#/rma-device-selection: allows request equipment
RMA

= http://www.sunpowerconsole.com/#/devices/inverter-micro: returns mostly empty results

for me with callback errors to “https://pvsmgmt.us.sunpower.com/”

NOTE: | don’t know when this changed exactly, but | suspect somewhere in the
second half of 2023, these URLs no longer work. They all return a “403 Forbidden”
response in newer firmware versions. This is likely coincident with the notion that
SuUnpower does not want installers to use a laptop anymore, but rather use the
“SunPower Pro Connect” phone application. For this purpose also, the PVS system
seems to now always have its WiFi network on (meaning its management WiFi

network).

Now, you could stand out there, with your laptop, and play with this console or issue API
commands, but it is not very practical beyond some basic testing. So, how to proceed? You
want to create a situation where you can directly access this port from within your network. If
you are connected via WiFi you are, effectively, talking to the WAN port, where neither console
nor APl is available. So, somehow you must connect to the LAN port. Forgetting the
inconvenience (to some) of installing a cable, you can use a cable, but there are some
problems you will need to get around. You cannot just plug this cable into a switch on your
network as the PVS monitoring system has its own address and runs a DHCP server. You
probably already have one, and chaos with networking problems will ensue. It is possible to
get around this by using a dedicated port on your router or switch and configuring proper
routing from your network to this network (possibly involving VLAN solutions). Since your
computer stays on your network, nobody will be using the PVS-supplied DHCP server and you
should be fine. You will have to make assumptions about network addresses and setup, and

you will not have DNS to resolve sunpowerconsole.com for you. There are workarounds to all
of this, but | consider them out of scope for this write-up.

http://www.sunpowerconsole.com/#/landing
http://www.sunpowerconsole.com/#/firmware
http://www.sunpowerconsole.com/#/network/config
http://www.sunpowerconsole.com/#/rma-device-selection
http://www.sunpowerconsole.com/#/devices/inverter-micro
https://pvsmgmt.us.sunpower.com/
http://sunpowerconsole.com/

There is another solution that is relatively cheap and easy (as described in this paragraph it
does not apply to installations with a SunVault ESS). Use a very small form factor computer
with at least one ethernet port and with WiFi and install it inside or near the PVS monitoring
box. Ethernet connects to the PVS LAN1 port, and WiFi needs to be configured to connect to
your WiFi. With some proper configuration that computer can act as a proxy between both
networks. The address of that little box on your WiFi becomes, effectively the http access to
the PVS system. Any HTTP query sent to the little box is forwarded to the LAN port, and any
responses are forwarded back to whoever asked. A very commonly suggested solution
involves a Raspberry Pi3. Principally because it is small, cheap, and comes with Ethernet and

WiFi. Older models Raspberry can be equipped with a USB-based WiFi dongle fairly cheaply
too, so if you have one of those lying around it can also be made to work. In the remainder, |
will describe the Raspberry-based solution, but the principles should apply to almost any other
small computer.

There are reports from one user with a Raspberry Pi model 4 who experienced intermittent
problems due to the USB port not providing enough power. It is probably best to stay with a
less power-hungry model. Very little is required from the “proxy computer” so even the
smallest Raspberry Pi Zero will work. There are also reports of some USB Ethernet adapters
not working. | have only tested with the one mentioned here. That one works for me, and at
least one of the users with problems reported that after switching to this adapter things
worked.

In this setup the small computer acts as bridge (or proxy) to the PVS6 internal network (RPi =
Raspberry, and [] denotes the network interface):

https://www.raspberrypi.com/products/

User [Browser?] RPi [WiFi] RPi [Eth] PVS6 [LAN1]

http call

pass it on

same http call

http response (json)

S N N SN SRS
pass it back
<
<_http response (json)
User [Browser?] RPi [WiFi] RPi [Eth] PVS6 [LAN1]

The following ports/interfaces will be in use:

PVS6 LAN1: Installer/Console port, represented with IP address: 172.27.153.1

= PVS6 WAN/LAN2: Customer/WAN port using WiFi (IP addressed assigned by your WiFi
network and used for uploading to SunPower, not otherwise relevant in this document)

= RPi LAN1: Ethernet port, directly connected too PVS6 LAN1. Will receive an IP address
from the PVS6 system in the network 172.27.153.0/24 .

= RPi LAN2/WiFi: Raspberry customer-facing interface. This is where you will browse to, or
execute APl commands. IP address assigned by customer WiFi (static reservation?)

PVS6 with SunVault battery system (ESS)

If you have a SunPower setup with SunVault Energy Storage System (ESS), you will generally

have these two large boxes/cabinets:

The one on the right is referred to as the HUB+, and the one on the left is a battery cabinet.
Depending on your battery storage capacity you may have more than one of these. Each

cabinet contains two batteries and an inverter.

This is the HUB+ with the top panel removed (basically what you see here is the inside circuitry
of the stand-alone version of the PVS6):

This is the inside of the main battery cabinet. The light-colored module in the top half is the
inverter, below are two batteries. The small-ish light-colored box on top of those is the Conext
Gateway device.

Inside the HUB+ you will find the following components:

= Sub-panel for backed-up loads. This will have to be wired to all circuits on the premises
you desire to be backed up by battery power in the event of a utility power outage. This
is the top section labeled “BACKUP LOAD PAN”.

= Sub-panel for the PV system. Typically connects both phases of the PV system and the
PVS6 monitoring module. This is the middle section labeled “GENERATION PAN”.

= Sub-panel for the non-backed-up loads. This is the bottom section, labeled “NON-
BACKUP LOAD PAN”.

= Microgrid interconnect device. This is a screwdriver-operated rotation switch to
completely disconnect the microgrid (your PV system plus batteries) from the rest of the
electrical installation

= PVS6. This is the same monitoring system mentioned elsewhere in this document. The
ESS-based solution does not have its own PVS cabinet, but rather its printed circuit
board is integrated with the HUB+ behind a removable panel on the top. You will need to
remove/open this panel to access network connections.

The PVS6 still performs all functions and is the entity to communicate with the SunPower
portal, but we do need to change the networking approach a little to make the rest of what we
describe possible.

In this picture, the black cable is in the LAN1 port and it goes to the Conext Gateway device
located inside the battery cabinet. The two metal-colored connectors below it (the top one of
which contains the blue cable) are for RS-485 serial communications (labeled in blue with “RS-
485 2-wire”, and in white with “INVERTER METER OTHER 2 WIRE”). This is the “modbus”
communication system referred to elsewhere in this document. The blue cable connects the
PVS6, via this serial communications channel, with the first inverter (inside your first, and
perhaps only) battery cabinet. If you have more than one such cabinet there should be an
additional cable from the second port in the first cabinet to the next battery cabinet. The RS-
485 serial communications system is a daisy-chained channel/bus.

In some other installations the blue cable may not be used, but the black one (or perhaps other
color) runs to the inverter. In this case ethernet communications is used between all devices.
The instructions that follow (i.e. installing a switch etc.) don’t change, except that you could
possibly leave out the switch by utilizing the unused ethernet port in the last inverter in your
setup. | have not seen this myself, but documentation suggests that each inverter has two
ethernet interfaces for this purpose. Overall you might be best off following a path that
changes the least in your installation (which | suggest is the switch based installation).

Here are some more pictures of the insides of a more receent ESS setup using the non-
Ethernet PVS6 version:

The networking setup now will require a switch (anything simple and unmanaged will do). This
switch needs a minimum of 3 ports:

1. This will be cabled to the PVS6 LAN 1 port and replaces the black cable in the picture

2. This will be cabled to the ESS box and you can use the original black cable removed
from the LAN1 port for this.

3. This will be the port to connect the Raspberry to, or a laptop for testing, or a cabled
solution to your home network (requires a router with an “extra” port). Alternatively an
unused ethernet port in the battery cabinet on the inverter.

After placing cables (1) and (2) the PVS6 needs to “reset” its networking. This can be
accomplished by rebooting the PVS or possibly by power cycling the switch. In a non-ESS
setup, you can reboot the PVS6 by using the breaker to power cycle it. In a non-ESS setup
power cycling using the breaker has been tested and works. In a SunVault ESS-equipped
system there is a breaker, but | am not sure if cycling it is a good idea (and it has not been
tested). Instead, you could remove power from the switch, wait 5 seconds, and re-establish the
power. This will not do the same as a power cycle/reboot, but it will cycle the network
connections and may well do the job.

Another report says a power-cycle is possible for ESS systems by both unpluggin the DC plug
power from the PVS6 and by cycling the breaker in the HUB+.

After this you want to use your SunPower app to confirm the system is still reporting to their
portal normally (this may take a few minutes though).

Once you decide what to plug into the third port (Raspberry approach or cabled approach),
you can proceed with the instructions below substituting plugging your Raspberry’s network
cable, or your cable to your home network into the third (or any) port of the switch instead of
the PVS6 LAN1 port. Everything else remains the same.

NOTE: Another individual has made available source code for these ESS-equipped

installations that will allow monitoring of the ESS system state and battery
information. It does this by “snooping” on the modbus messages, intercepting the
relevant ones, and publishing messages to an MQTT broker. Solutions such as
Homeassistent can then interface with the broker to get the information and do
something useful with it, such as logging in to a database, displaying graphs, etc.

Setting up the Raspberry
For hardware you will need:

= Raspberry Pi3, preferably in a small enclosure. | mention this model because it has built-
in WiFi and an Ethernet port. Other models may well be used for this function as well. For

https://github.com/webdeck/sunpower-ess-monitor

example the Pi Zero 2 W, at US $15, combined with an Ethernet dongle for another US
$15 or so may well do the job. The Zero 2 W has the same processor as the Pi3, but less
memory. After experimenting with the Pi3 successfully, | opted for this solution (Pi Zero 2
W) in the end because it is more compact, uses less power from the PVS6, and
generates less heat. Ultimately, | repeated the replacement with a Raspberry Pi Zero W,
which is even cheaper and has lower power demands. Part list:

= Raspberry Pi Zero W, from vilros.com

= OTG Micro B Ethernet Adapter for Linux Raspberry Pi Zero W, Windows 10 Tablet

from amazon.com

= Cat6 Ethernet Cable 0.6 Feet from amazon.com

= One of Micro USB Charging_Cable, CableCreation 6-Pack(0.5/0.5/4/4/6/6ft) High
Speed USB to Micro USB Charging_Cord (I used the 0.5 ft version) from

amazon.com

= A power supply ending in a micro USB-B connector. Usually, you buy this with your
Raspberry. You can also use a USB-A to micro USB-B cable with the A end plugged into
a suitably equipped USB port (must be able to provide enough power, often 700mA is
enough for Pi 3, or < 500 mA for Pi Zero W). Frankly, for a permanent installation, you will

need the latter anyway.

= A micro SD card to load the software on. It seems an 8GB card is enough, may be even a
4GB. In my final (for now) install | used a Pi Zero W, which has only 1.4G used on its file

system.

= A (short) ethernet cable to connect the Raspberry to the PVS monitoring system

This is what my final installation looks like (not quite, | replaced the Pi Zero 2W shown here,

with a Pi Zero W; same footprint, same case:

Prepare the software on the Raspberry

1. Download the Raspberry Pi Imager or use balenaEtcher.

2. Select the Raspbian Lite image (or any other that you like and prefer, but this is good

https://amazon.com/gp/product/B01AT4C3KQ
https://amazon.com/gp/product/B093KG3R1Q
https://amazon.com/gp/product/B013G4DAFS
https://www.raspberrypi.org/downloads/
https://www.balena.io/etcher/

enough). Note that for a Pi Zero W you need a 32-bit version and Raspian Lite may be
your only choice (and it works just fine).

3. Write the image to an SD card using the imager.

4. If you used Raspberry Pi Imager your resulting SD card wil now be mounted on your
system and wil be accessible there. If you used balenaEtcher use Disk Utility to mount
the volume first.

5. Create a file, at the root level of the SD card (it will be copied into the right place once the
Raspberry boots). Call it wpa_supplicant.conf , and give it the contents listed below.
This will enable the Raspberry to connect to your WiFi.

6. Create an empty file named ssh at the root level also. This too will be removed after
boot, but causes SSH access to be configured.

7. Eject the SD card from your desktop or laptop

8. Install SD card in Raspberry

9. Connect Raspberry Ethernet port to your network
10. Boot the Raspberry by applying power to it

11. While not critical, you may use the command sudo raspy-config to change the
configuration to reflect your local timezone, and locale, and edit the hostname of the
system.

The wpa_supplicant.conf contents:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=US

network={
ssid="<Name of your WiFi>"

psk="<Password for your WiFi>"

}

Setup networking

You will need to configure things to know the IP address for your Raspberry on your network.
There will be two addresses, one on the Ethernet cable and one on the WiFi (if you set
everything up correctly). The best way is to make so-called static reservations for both
connections in your DHCP server (typically on your WiFi router or other router). To do this, you
need the MAC addresses for the Ethernet and WiFi.

If you do not have those you have to figure them out first. There are various options to do so,
and methods vary a little between Windows and Mac or Linux, although the latter two may be
quite similar. | suggest looking into arp -a or using the command 192.168.1.255 or similar,
depending on your network settings. Once you have found the appropriate MAC addresses
you can make the static DHCP reservations. How to do that depends on your equipment and |
won’t discuss it here.

If you can find the IP address for either of the two ports, you should be able to log in to the
Raspberry using the username pi and password “raspberry.” If you did the SSH step above
correctly, this should work. Now is a good time to change the default password to something
of your liking: type passwd and follow the prompts.

Reboot the Raspberry to have it find its now reserved IP address. From now on, you should be
able to use SSH with that address. You might even go one step further and set your router to
“publish” a name for it for your convenience. This typically involves the DNS configuration of
your router. Verify you can connect to either of the two IP addresses.

Setup networking to access the PVS6

To allow the Raspberry to be the proxy we described above:

1. Login to the Raspberry and update the OS: sudo apt-get -y update; sudo apt-get -
y upgrade

2. Install ha-proxy : sudo apt-get install haproxy (note: no dash in the name here!)

3. Modify the networking setup for the Ethernet port so that it will not configure the gateway
address supplied by the PVS6 DHCP server. If you do not do this or do it incorrectly, the

WiFi connection will not work. If that happens, use an Ethernet cable to log in and fix it.
The change requires you to edit /etc/dhcpcd.conf , add two lines to it, and save:

1. 1interface eth@
2. nogateway

4. The step above will let the Raspberry Pi use the DHCP server inside the PVS6 to obtain
an |IP address on its 172.27.153.0/24 network. | have observed that, at times, this
address stops working and, consequently, the communication with the PVS6 through the
proxy stops working. Most likely, after handing out a DHCP address and having it expire
(on the Raspberry Pi), an attempt to renew it fails. To get around this, configure a static
address by editing the /etc/dhcpcd.conf again to add, right after the interface eth@
line:

1. static ip_address=172.27.153.10/24

5. | have found that, occasionally, the WiFi connection may be lost (e.g. after a main house
power loss WiFi does not seem to reconnect). Take the following steps to have the
Raspberry attempt to reconnect when the connection is lost:

1. Create afile in /usr/local/bin called wifi-reconnect.sh with the content

shown below.

2. Make the file executable by issuing the command: sudo chmod +x wifi-

reconnect.sh

3. Create an entry in crontab to run this script regularly: sudo crontab -e and add a
line containing * * * * * /usr/local/bin/wifi-reconnect.sh >> /dev/null
2>&1

4. Your home directory will contain a file named wifi-log.txt where you can find

reconnect information logs.

6. Due to the above script, | have also found that WiFi connections get “lost” with a
message in /var/log/syslog saying “wlan0: carrier lost”. While the script attempts to
solve the situation, | found that on some Raspberry systems, power saving mode is
enabled, causing the problem. The fix is to add a line to /etc/rc.local (and reboot, or

execute the line once manually): /sbin/iw dev wlan@ set power_save off

7. Next, add the content shown below to /etc/haproxy/haproxy.cfg

8. Reboot the Raspberry: sudo shutdown -r now

Content of the wifi-reconnect.sh file:

#!/bin/bash
echo_ssid()

{
echo "$(/sbin/iwgetid --raw)"

check_wifi()

{
sleep 5
if [-z "$(Cecho_ssid)"]; then
echo "“date -Is" Failed to reconnect using $1" >> "$LOG"
fi
ks

LOG="/home/dolf/wifi-log.txt"

if [-z "$Cecho_ssid)"]; then
echo "“date -Is® WiFi interface is down, trying to reconnect" >>
"$LOG"
if command -v /sbin/ip &> /dev/null; then
/sbin/ip link set wlan@ down
sleep 10
/sbin/ip link set wlan@ up
check_wifi /sbin/ip
elif command -v sudo ifconfig &> /dev/null; then
sudo ifconfig wlan@ down
sleep 10

sudo ifconfig wlan@ up

check_wifi ifconfig
else
echo " 'date -Is’ Failed to reconnect: neither /sbin/ip nor
ifconfig commands are available" >> "$LOG"
fi
fi

echo '"WiFi check finished'

Content to add to /etc/haproxy/haproxy.cfg :

frontend http-in
bind *:80
bind *:9002
bind *:19531
bind *:48888

default_backend backend_servers

backend backend_servers
server pvsb 172.27.153.1:80
compression algo gzip

compression type text/html text/plain text/css application/json

listen stats
bind *:8080
stats enable
stats uri /
stats refresh 10s
stats admin if LOCALHOST

NOTE: You see bindings here for port 80, the standard web port where all API calls
would go, and some additional ports. Port 19531 will provide the contents of a system
log to your browser. The other two ports are for WebSocket connections, whose

purpose and protocol are unknown.

Install the Raspberry inside/along the PVS6 system

Open the PVS monitoring system by releasing the clip at the front bottom. This will expose the
inside where the ports are. For now, it will be most straightforward to hook everything up

provisionally and worry about stashing everything away later.

Plug a (short) ethernet cable from the Raspberry into the LAN(1) port. Provide a power source
to the Raspberry:

= Use a (short) USB-A to micro B. | tested this with ports 3 and 4, but | think any of this will
work. It seems to supply enough power for the Raspberry (at least in the manner it is

used here) or

= Use the supplied power brick. This likely won’t work well for a permanent installation
inside the PVS monitoring box because there is no power outlet there, but for now, it can

work.
Power up the Raspberry.

Testing

You should now be able to open a browser on your desktop, laptop, tablet, or phone and
browse to the WiFi IP address that you set up for your Raspberry. When you do, use http, not
https, as we have not configured that. You should see the SunPower console landing page
shown earlier. If you don’t, something is wrong with your setup. Retrace all steps to
troubleshoot.

Now that, presumably, the Raspberry proxy setup works, you can use it to try and use the
console (I did not bother, so | don’t know if you could do everything an installer does or
whether passwords are needed). You can also access the built-in API to request information.

You can try this out by browsing to:

http://<your pi3 IP address on WiFi>/cgi-bin/dl_cgi?Command=Devicelist

That will produce some output that starts like this (or looks like it with some different numbers
in it):

{
"devices": [{

"DETAIL": "detail",
"STATE": "working",
"STATEDESCR": "Working",
"SERIAL": "ZT01234567890ABCDEF",
"MODEL": "PV Supervisor PVS6",
"HWVER" : "6.02",
"SWVER" : "2021.9, Build 41001",
"DEVICE_TYPE": "PVS",
"DATATIME": "2021,10,28,07,31,48",
"dl_err_count": "0Q",
"dl_comm_err": "O",

"dl_skipped_scans": "@",
"dl_scan_time": "0",
"dl_untransmitted": "6108",
"dl_uptime": "34",
"dl_cpu_load": "0.87",
"dl_mem_used": "33352",
"dl_flash_avail": "67546",
"panid": 1234567890,
"CURTIME": "2021,10,28,07,33,52"

There is a lot more there, but not shown. | used a fake serial number and “paid”! Seeing this
output (it may take a few seconds) again confirms where access to detailed data is.

A browser is not necessarily the best vehicle to interact with this API. For simple testing, it
works, and you can study the output. Below, you will find documentation for everything | have
found. | use a tool called “Paw” for Mac to make interaction and experimentation easier, but
you can also use curl, wget, or a programming language of your choice (Python seems quite
popular for this).

Confirming the above works may be enough for you. If, for example, you now wish to integrate
your SunPower information with Homeassistant, you can do so.

Instructions for cabled connection

These instructions cannot be precise and complete without knowing exactly what equipment
you use. If you are going this route, you are probably fairly conversant in networking, and using
these “hints,” you can figure it out.

Using an (old) intermediary router

Basically follow these steps:

= Connect router WAN port to PVS6 LAN1 (installer) port by cable
= Configure with a static address of 172.27.153.2 and netmask 255.255.255.0
= Configure with gateway 172.27.153.1

= Configure with DNS server 1 172.27.153.1 and optional server 2 something like
8.8.8.8 (Google DNS),or 1.1.1.1 (Cloudflare DNS)

= Connect router LAN port to your regular network

= Configure with available static address on your local LAN, or use your configure as
dynamic (DHCP) and configure your regular network’s DHCP server with an
appropriate static reservation

= Turn off DHCP and possibly WiFi on old router. You won’t be using/needing these.

= On the old router, set up a “static route” for 192.168.1.0/24 to its LAN port (as that is
where your regular network is). NOTE: | used the commonly used 192.168.1.0/24 as
an example. Substitute with your correct network. This route will tell it how to route
responses to requests coming from that network.

= |n your regular router, set up a “static route” for 172.27.153.0/24 to the address of the old
router’s LAN port (as that is where the PVS6 connection now is). This route will tell it how
to send packets for the PVS6 network to the old router, which will then send them to the
PVS6.

= Setup your DNS to map sunpowerconsole.com to 172.27.153.1
You should now be able to browse to http://sunpowerconsole.com as described.

Using your regular router with extra port

If you don’t have an additional router, but your regular router has an extra port you can likely
configure it as described for the “old” router above (Turn off DHCP for that port only). This is
not typically an option with provider-supplied routers. The ports on those are just part of a
switch and cannot be managed. | use an EdgeRouter POE which is fully manageable and
could do this (but | am using the Raspberry approach). Somebody else is using a TP-Link
Omada router with the necessary extra ports and, of course, there are others. Still, your typical
cable modem, etc. will not have the necessary ports or configurability.

With that setup (but even without the cable to his extra router port), he plugged a laptop into
that same switch and used the “curl” command to interact with the API, confirming the setup
works.

A key point from the “old router” setup above is that a LAN-to-WAN transition is used in that
router. This causes the router to apply Network Address Translation (NAT). This causes all
packets to 172.27.153.0/24 from 192.168.1.0/24 (or equivalent in your case) to be remapped
and, once on the 172.27.153.0/24 appear to be coming from the old router’s WAN port.
Therefore, responses will go back there and then be “unmapped” and sent back to the original
requester. Without NAT replies would have to go back to a 192.168.1.0/24 address. This is not
on the PVS6 network, so they will be forwarded to the default gateway for handling. This is the

PVS6, and it has no clue about this other network, so things go into a black hole and don’t

work.

Therefore, if you wish to do this with an extra port on an existing router, you must figure out
how to configure that port to have NAT happening. Sometimes, this can be easily achieved by
declaring this port a WAN port, but beware. If your router has multiple WAN ports, it may want
to try and load balance traffic for the internet between the two, and that may not work or may
not be what you want. If you can, configure it as a LAN port and configure NAT. The precise
details of how to do this vary from router to router and are beyond this writeup's scope.

What about no Ethernet ports available on PVS?

This can happen with the newer (or very old) style PVS system. The newer style PVS6 has USB
ports that will accept (certain) Ethernet dongles, thus making ethernet available again. The
start of this document contains links to documentation for both old-style and new-style PVS6

systems. Sunpower says:

The SunPower PVS6 monitoring device now utilizes a plug-in dongle port for Ethernet
connection. The PVS6 with the dongle port is part number 60232 and has a W in its
serial number (for example, ZT214385000549Wxxxx). The traditional PVS6 without the
dongle port is part number 529027 and has an A in its serial number (for example,
ZT214385001823AXXXX).

It goes on to explain two approved dongles:

= Plugable USB2-E1000

= Cable Matters 202023

Dongles must be connected when PVS6 is off because they will not be dynamically detected.
A power cycle after connecting should also work. If no SunVault system is present, the system
will NOT come with a dongle, but once you acquire one, it should go into port 3, labeled
(WAN/LAN2) of the PVS6 unless you have an SMA US-40 inverter present; in that case, it goes
into ethernet port 2 (labeled LAN1). If a SunVault component is present, a dongle should be

https://plugable.com/products/usb2-e1000
https://www.cablematters.com/pc-489-138-usb-20-to-fastethernet-adapter.aspx

pre-installed in port 2 (labeled LAN1) of the Hub+.

All other instructions should apply with dongle(s) installed properly (see earlier pictures). If you
do not have dongles, do not wish to use them, or have a very old PVS system that cannot
accept dongles, you must integrate using Modbus. A description of accessing and getting data
through the RS485 bus available on one of the connectors follows. This requires using the
ModBus protocol. | have not done this myself, so the following is based on information | have

scraped together from other users.

Hooking up RS485/Modbus hardware

One user bought a $20 RS845 gateway to plug into the port. One side will “speak” RS485 and
the other will speak Ethernet. You can then connect the Ethernet cable, as described for the
Raspberry, or use a Raspberry to talk to the TS485 ModBus and have it also run a web server
with some API you would have to create that can be contacted/integrated with HomeAssistant.
Alternatively, you can make that Raspberry put MQTT messages for consumption elsewhere.

Two adapters | have seen mentioned:

= \Waveshare Industrial serial server, RS485 to RJ45 Ethernet, TCP/IP to serial, rail-mount

support, with POE function(optional)

= https://www.pusr.com/products/1-port-rs485-to-ethernet-converters-usr-tcp232-304.htm
|

Once you have the appropriate hardware, you can write or combine the necessary software
with available software. User Nihar Meta describes his setup using those adapters as follows:

Nihar Meta’s Setup

He runs the YasdiMQTT software on any Linux host (possibly using docker) along with the
Yasdi IP driver. His particular inverters like to communicate over RS485 over 19200 baud, but

your mileage may vary. Try other speeds until you get something working.

https://www.pusr.com/products/1-port-rs485-to-ethernet-converters-usr-tcp232-304.html

He uses a second such gateway to “talk” to the PVS6. It seems to want1200 baud
communications. His SMA branded converters publish data that in MQTT show up like this:

“sn” : XXXXXXXXX,

“time”:1667780271,

“values”:{
“A.Ms.Amp”:1.1010000522946939,
“B.Ms.Amp”:1.1370000540046021,
“A.Ms.Vol”:416.35999069362879,
“B.Ms.Vol”:364.48999185301363,
“A.Ms.Watt”:458,

“B.Ms.Watt”:414,

“Pac”:832,

“GridMs .W.phsA”:416,
“GridMs.W.phsB”:416,

“GridMs .W.phs(C”:0,
“GridMs.PhV.phsA”:124.04999722726643,
“GridMs.PhV.phsB”:123.82999723218381,
“GridMs.PhV.phsC”:0,
“GridMs.PhV.A2B”:247.89999445900321,
“GridMs.PhV.B2C”:0,
“GridMs.PhV.C2A”:0,
“GridMs.A.phsA”:3.3600001595914364,
“GridMs.A.phsB”:3.3600001595914364,
“GridMs.A.phsC”:0,
“GridMs.Hz”:59.979998659342527,
“GridMs.TotVAr”:0,
“GridMs.VAr.phsA”:0,
“GridMs.VAr.phsB”:0,
“GridMs.VAr.phsC”:0,
“GridMs.TotVA”:832,
“GridMs.VA.phsA”:416,

“GridMs.VA.phsB”:416,
“GridMs.VA.phs(C”:0,
“GridMs.TotPF”:0.999000047449954,
“Serial Number”:1913069271,
“E-Total”:64595.131068103947,
“GM.TotWhOut”:0,
“Op.EvtCntUsr”:15187,
“Mt.TotTmh”:34065.9578104291,
“Mt.TotOpTmh”:33506.823379693815,
“Op.EvtNo”:0,
“Op.EvtNoDvlp”:0,
“Op.TmsRmg”:0,

“Mode” : ”Mpp”’,

“Error”:”——-%,
“Op.Health”:”0k”,
“Op.Prio”:”NonePrio”,
“Op.GriSwStt”:”Cls”,
“Inv.TmpLimStt”:”NoneDrt”,
“InvCtl.Stt”:”0n”,
“PlntCtl.Stt”:”0n”,
“Op.BckOpStt”:”ModGri”,
“PCM-D1gInStt”:”None”

Remaining things to figure out are the pinouts on RS485 of the devices to the gateways. He
describes:

= |f you are using the SB5000TL-22 with the RS485 interface, its pins 2,5,7 (D+,Gnd,D-)
and your existing serial connection should be connected to the inverter

= You will need to find the matching pins on your PVS

= PVS2x documentation shows that on the PVS, pins (3,4,5) are (D+,D-,Gnd)
respectively

= Additional DB9 male and female breakout modules are allow wires to be used to

easily create the desired connections for experimentation.
= For PVS5/6 see the quickstart guide mentioned earlier in this document.

= For -40 style inverters, SMA prodivdes a direct connection to ModBus over TCP, so no
adapters needed, but you will need an intermediary system (e.g. rPi) to interact with
ModBus and broker results to an MQTT system.

= As for the configuration with Libyasdi, Configure the gateway as a UDP (or UDP Server)
on port 24272 which is the default SMAData Port This is what the gateway device listens
on. For the Destination IP/Port , use your host IP and port 24273

= Depending on your brand gateway device, (I am using Wavelink for now), on
advanced settings, | UNselected RS485 Multi-host and Bus Conflict Detection.

= Power cycle the inverters, with a minimum 2 minute “off” period

= Configure yasdi.ini

[DriverModules]

Driver@=yasdi_drv_ip

[IP1]
Protocol=SMANet
Device0=192.168.1.58

[Misc]
#DebugOutput=/dev/stdout

= Docker-compose (if using docker):

version: “3”

services:

yasdiZmqtt:

You may also check out :latest, :stable or build: ".", if
:latest fails

image: “pkwagner/yasdiZmqtt:alpine”

volumes:
- “./devices:/etc/yasdiZ2mqgtt/devices”
- “./yasdi.ini:/etc/yasdiZmgtt/yasdi.ini:ro”
— “/etc/localtime:/etc/localtime:ro”
- “/etc/TZ:/etc/timezone:ro”

ports:
- 24273:24273/tcp
- 24273:24273/udp

environment:
YASDI_CONFIG: "/etc/yasdiZ2mqgtt/yasdi.ini"
YASDI_DRIVER_ID: @
YASDI_MAX_DEVICE_COUNT: 2
YASDI_UPDATE_INTERVAL: 31
MQTT_TOPIC_PREFIX: "solar/inverters"
MQTT_SERVER: "192.168.1.25"
MQTT_PORT: 1883
MQTT_USER: "mgtt"
MQTT_PASSWORD: "MQTTPASSWORD"

TZ: "America/Los_Angeles"

= |t seems newer SMA inverters use ModBus/RS485 or ModBus/IP

= QOlder ones use SMData protocol

Integrating with Homeassistant

Integration is pretty straightforward if you already have an HA instance up and running. Make
sure https://hacs.xyz (Homeassistant Community Store) is installed and operational. Configure

the repository from https://github.com/krbaker with the URL https://github.com/krbaker/hass-s

unpower.

https://256stuff.com/solar/scripts/smadat-11-ze2203.pdf
https://hacs.xyz/
https://github.com/krbaker
https://github.com/krbaker/hass-sunpower

Follow the steps to install and restart HA. You can now go to “Configuration > Integrations”,
click “+” in the bottom right corner, and search for “SunPower.” You will then be asked for a
host IP address. You need to input the address of your Raspberry’s WiFi connection unless you
are using a more complex network setup, in which case you would directly use the SunPower
console IP address of 172.27.153.1.

After this is all done, you should see your PVS monitoring system and associated devices for
the supervisor, power production meter, power consumption meter, and micro-inverters.
Information for each individual micro inverter is available. Note that their state might be listed
as “error” if your PV system is not yet switched on (breaker(s) in the off position). This might be
the case between completion of installation and your utility’s permission to operate is granted.

At this point, | do not know (yet) if any of the “extra” devices in a battery-equipped setup will
show up as sensors through this integration. Nor do we know if/how this battery-related
information can be integrated with the Energy dashboard in HA.

Once you have this setup done, the rest is up to your imagination. | created a page like this, for
example:

| have 24 panels in two groups, each of 12 panels. It is hard to see, but each panel is graphed,
and when you hover over them, you can see individual readings.

Other integrations

| have not personally investigated other integrations. If you need something that works out of
the box, you’ll have to Google around and give things a try. If you can do a little programming,
look at the resources mentioned at the start of this writeup. Several of them have GitHub
repositories with code in them. At the very least it will show you how it is done, or you can
modify the code to suit your needs.

API information

The Sunpower Console API recognizes a bunch of specific commands. The commands are
issued by executing a GET request over HTTP to the URL that looks like this:

http://<rpi address>/cgi-bin/dl_cgi?Command=<command name>

Below, | document each command | know about. Some commands require their name as the
Command query parameter, and some require adding your system’s serial number using
SerialNumber. See documentation. In the DevicelList command, | will show full response
headers and body, but in subsequent documentation, | will only show the body and
explanations of what you see there.

The headers indicate that not only GET commands but also POST, DELETE, and PUT are
allowed. This would suggest this is a full so-called REST API. | have not attempted to do any of
those interactions. If they even work, there is potential for messing something up. Since my
system is not for experimentation but rather for power production, | do not want to take that
risk. Be warned!

You will note that several commands return data with some keys listed in all uppercase and
others in all lowercase. It appears the UPPERCASE ones are device properties/attributes and
the lowercase ones are performance indicators.

GET /cgi-bin/dl_cgi?Command=DeviceList

This command gets a complete list of all known PVS devices and their status and performance
descriptors. There seem to be three device types:

1. Supervisor. This seems to be the main entity that controls everything

2. Power meter, which comes in a production and consumption version. The latter will show
up even if no consumption metering kit is installed, but kWh information should stay at 0.

3. Inverter. There may be as many of these as you have micro-inverters (panels).

The output body below has fake serial numbers and omits all but the first inverter. This way,
you can see an example of each device type in the output. Details are discussed below the
body.

You will also note the result part of the response. | have never seen anything but success
but it stands to reason that if it says anything but success , the rest of the response should
not be interpreted.

NOTE: This command may take quite a while. On my PVS6 system with 24 panels it
takes between 6 and 7 seconds to return all results!

= Response 200 (application/json)

= Headers

HTTP/1.1 200 OK

Content-Type: application/json

Access-Control-Allow-Methods: GET,POST,DELETE,PUT

Pragma: no-cache

dlcgi-build-time: Sep 15 2021 00:05:00
Access-Control-Allow-Origin: *

Access-Control-Allow-Headers: Content-Type

Cache-Control: no-cache, no-store, no-cache, must-revalidate,
post-check=0, pre-check=0

Server: lighttpd/1.4.51

= Body
{
"devices": [{

"DETAIL": "detail",
"STATE": "working",
"STATEDESCR": "Working",
"SERIAL": "ZT01234567890ABCDEF"
"MODEL": "PV Supervisor PVS6",
"HWVER" : "6.02",
"SWVER" : "2021.9, Build 41001",

"DEVICE_TYPE": "PVS",

oA

"DATATIME": "2021,10,27,07,25,00",
"dl_err_count": "0Q",
"dl_comm_err": "480",

"dl_skipped_scans": "@",

"dl_scan_time": "1",
"dl_untransmitted": "5539",

"dl_uptime":

"85428",

"dl_cpu_load": "0.28",
"dl_mem_used": "73704",

"dl_flash_avail”: "67599",
"panid": 1234567890,
"CURTIME": "2021,10,27,07,28,13"

"ISDETAIL": true,

"SERIAL":

"PVS6M12345678p" ,

"TYPE": "PVS5-METER-P",

"STATE":

"working",

"STATEDESCR": "Working",

"MODEL":
"DESCR":

"PVS6M0400p" ,
"Power Meter PVS6M12345678p"

"DEVICE_TYPE": "Power Meter",

"SWVER":
"PORTH : mn ,
"DATATIME":

L1 30@0 " ,

"2021,10,27,07,28,12",

"ct_scl_fctr": "50",
"net_ltea_3phsum_kwh": "11.34",
"p_3phsum_kw": "@",

"q_3phsum_kvar" : "Q",

"s_3phsum_kva": "0@",
"tot_pf_rto": "1,

"freq_hz":

ll6®ll ,

"CAL@H : |l50" ,

"origin":
"OPERATION":

"data_logger",

Hnoopll ,

"CURTIME": "2021,10,27,07,28,13"

}, 1
"ISDETAIL": true,
"SERIAL": "PVS6M12345678c",
"TYPE": "PVS5-METER-C",
"STATE": "working",
"STATEDESCR": "Working",
"MODEL": "PVS6M0400c"
"DESCR": "Power Meter PVS6M12345678c",
"DEVICE_TYPE": "Power Meter",
"SWVER" : "3000",
"PORT": "",
"DATATIME": "2021,10,27,07,28,13",
"ct_scl_fctr": "100",
"net_ltea_3phsum_kwh": "@",
"p_3phsum_kw": "@",
"g_3phsum_kvar": "o,
"s_3phsum_kva": "@",
"tot_pf_rto": "o",
"freq_hz": "60",
"il_a": "Q",
"12_a": "0",
"vin_v": "116.5863",
"v2n_v": "116.4296",
"v12_v": "233.0139",
"pl_kw": "o",
"p2_kw": "o,

"neg_ltea_3phsum_kwh": "0@",
"pos_ltea_3phsum_kwh": "0@",

"CALQ": "100",

"origin": "data_logger",
"OPERATION": "noop",
"CURTIME": "2021,10,27,07,28,14"

oA

"ISDETAIL": true,

"SERIAL": "EQ0123456000001" ,
"TYPE": "SOLARBRIDGE",
"STATE": "error",
"STATEDESCR": "Error",
"MODEL": "AC_Module_Type_E",
"DESCR": "Inverter E00122125092032",
"DEVICE_TYPE": "Inverter",
"PANEL": "SPR-X22-360-E-AC",
"SWVER": "4.21.3",
"PORT": "",
"MOD_SN": "R36M20579663",
"NMPLT_SKU": oy
"origin": "data_logger",
"OPERATION": "noop",
"CURTIME": "2021,10,28,09,03,43"
H,
"result": "succeed"

Detail for supervisor

Most of the properties are self-explanatory. The DATATIME indicates the timestamp when the
presented information last changed, whereas CURTIME should be the timestamp of the
request (or something close to it). The timestamps are in UTC! Observation of DATATIME on
my system shows that the minutes component is always a multiple of 5 minutes and seconds
is always 0. So, if you are interested in getting timely information, perform the call after the
start of each 5-minute interval. You can interrogate more often, but if timing is not important,
don’t stress the PVS6 by constantly asking for Devicelist .

The meaning of the performance indicators can only be guessed by observation and a little
knowledge (dl probably means “data logger”):

= dl_err_count : Number of errors since last report?

dl_comm_err : Number of communication errors? (Not sure what kind)

dl_skipped_scans : Best guess this counts when the supervisor scans the PLC network
for inverters and it decides it needs to skip a scan

= dl_scan_time : Probably related somehow to the above mentioned scan
= dl_untransmitted : Number of not yet transmitted (to SunPower) events/records?

= dl_uptime : The number of seconds the data logger has been running. | observed it
being lower than a previously seen value (the prior value was almost 24h, the new value
was a little over 1.5h). | was not aware of a power outage in between, so either there was
a restart for power reasons or something else, or perhaps the device restarts itself
periodically (somewhat lousy safeguard against memory leaks), or something else. Also,
see the remark below.

= dl_cpu_load : CPU load average as it existed (possibly averaged over 5 minutes) at
DATATIME

= dl_mem_used : amount of memory in use. Assuming the motherboard has little memory

this is probably in kiB

dl_flash_avail : amount of free space on flash device. Assumed in kiB

During experimentation | occasionally encountered this response:

HTTP/1.0 503 Service Unavailable
Cache-Control: no-cache
Connection: close

Content-Type: text/html

<html><body><h1>503 Service Unavailable</hl>
No server 1is available to handle this request.
</body></html>

That would stay that way for a few minutes. After a successful retry, | would see dl_uptime
as a very low number, indicating that the supervisor/datalogger had apparently restarted. It is
not clear if | caused the crash/restart, or it “just happens”.

Detail for power meter

Reports show that power meter data is updated more frequently than supervisor information.
Reports indicate at least every 5 seconds. The power meter’s properties are fairly self-
explanatory. One thing to note is that the DESCR property contains the meter’s serial number
inside its name. The name ends with the letter “p,” indicating this is the “production” meter, or
the letter “c,” indicating the consumer meter. Ditto for the MODEL property. Also present, as
described for the supervisor are DATATIME and CURTIME .

The CALQ property indicates the sensor's current capacity for the calibration-reference CT
sensor. It will be “50” (50A) for the production meter, and either “100” or “200” for
consumption. Note that the ct_scl_fctr contains the capacity for the actual sensor.

The meaning of the performance indicators can only be guessed by observation and a little
knowledge:

ct_scl_fctr : Current capacity for the actual CT sensor used

net_ltea_3phsum_kwh : Net cumulative energy, in kWh, across all three phases

p_3phsum_kw : Average real power

g_3phsum_kvar : Cumulative “reactive” power, in KVA or kW, across all three phases
(since ?)

s_3phsum_kva : Cumulative “apparent” power, in kVA or kW, across all three phases
(since ?)

tot_pf_rto : Power factor ratio, defined as real power divided by apparant power

freq_hz : Operating frequency (typically around 60 Hz in the US)

The above performance indicators are present in both production and consumer meters. The
following are additionally available in the consumption meter:

= 1il_a: Supply current, in A, on CT1 lead

= i2_a: Supply current, in A, on CT2 lead

= vin_v : Supply voltage CT1 lead (relative to neutral, typically in the 110-120 V range)

= v2n_v : Supply voltage CT2 lead (relative to neutral, typically in the 110-120 V range)

= v12_v : Supply Voltage sum across CT1 and CT2 leads (typically in the 220-140 V range)

= pl_kw:Lead 1 average power in kW. Can be positive (excess back to utility) or negative

(used from utility)

p2_kw : Lead 2 average power in kW. Can be positive (excess back to utility) or negative

(used from utility)

neg_ltea_3phsum_kwh : Cumulative energy, in kWh, across all three phases, consumed

from utility

pos_ltea_3phsum_kwh :Cumulative energy, in kWh, across all three phases, supplied to

utility

Note that “net” utility consumption can be computed by subtracting the 1tea_3phsum_kwh

numbers.

The “production” meter only measures power produced by the PV array. At night, when there is
no production, this number can go slightly negative. This is the energy consumed by the PV
electronics (inverters). It has been reported in the -15 W range, but that may be specific for a
certain number of panels and model micro inverters. Since this power is always needed, that
would mean that on a daily basis, 24 x 15 Wh = 0.36 kWh from production is never available to
supply the home or back to the utility. If you insist you can try to factor this into any
calculations, but | will suggest it is too low to worry about. In a 6 kW system, this would
represent 15 / 6000 = 0.25%.

Detail for micro inverter

The information for the inverter(s) has the usual UPPERCASE properties. It should be noted
that when the panels are not powered, the returned STATE will be error. This presumes that, at
some point, the power was on (typically during initial installation and commissioning), and the
actual devices were discovered.

The following performance data seems to be available (but is not included where STATE is not

“working”):

module_serial : Equal to MOD_SN and contains the inverter module serial number (first

seen in version 2021.11)
= hw_version : Hardware version number (first seen in version 2021.11)
= freqg_hz : Operating Frequency in Hz (typically around 60 Hz in the US)
= stat_ind : Status indicator (first seen in version 2021.11)
= i_3phsum_a : AC Current (in A)
= p_3phsum_kw : AC Power (in kW)
= vln_3phavg_v : AC Voltage (in V)
= Ttea_3phsum_kwh : Total energy (in kWh)
= i_mpptl_a: DC Current (in A) for MPPT (Maximum Power Point Tracking)
= v_mpptl_v : DC Voltage (in V) for MPPT (Maximum Power Point Tracking)

= p_mpptl_kw : DC Power (in kW) for MPTT (Maximum Power Point Tracking) (first seen in
version 2021.11)

= p_mpptsum_kw : DC Power (in kW) for MPPT (Maximum Power Point Tracking) (seems
replaced by p_mpptl_kw since version 2021.11)

t_htsnk_degc : Heatsink temperature (degrees Celsius)
Additional devices for battery equipped systems

You will find additional devices in the response if you also have an attached ESS battery
system (not shown above). These devices have been “seen” in such an installation and details
follow below:

1. HUB+
EQUINOX-MIQ (That is an O for Input/Output)
PV-DISCONNECT

= A

GATEWAY: Controller device for everything the PVS6 does not manage (batteries/inverter
etc)

o

SCHNEIDER-XWPRO: Inverter/charger

6. EQUINOX-BMS: BMS = Battery Management System

7. BATTERY: An actual battery, there may be multiple of these
8. EQUINOX-ESS: ESS = Energy Storage System

Detail for HUB+

The HUB+ is described as a model “SunPower MIDC” with the device type “HUB+.” The
cabinet houses a sub-panel for the battery-backed-up loads in your house, controls the solar +
storage system for optimal performance, and manages transitions from utility power to battery

power.

It also houses the MIDC (Microgrid Interconnect Device Controller). It connects to the PVS6 via
port J8 for the 12 VDC power supply and port J13 for the CAN bus (not to be confused with
the ModBus). Finally, J10 is the RS-485 connection from the PVS6.

The device manages the microgrid (everything in the system that possibly generates power,
including PV panels and batteries) and the MID or Microgrid Interconnect Device. The latter
device will decouple the utility side from the PV/Battery side in case of a utility shutdown. The
MIDC commands this decoupling. However, there is also a physical switch in the MID,
operated by a screwdriver, for manual disconnect: turned to the left, it is in the disconnected
state.

The data section generally looks like this:

"ISDETAIL": true,

"SERIAL": "SY01234567890ABCDEF",
"TYPE": "HUB+",

"STATE": "error",
"STATEDESCR": "Error",

L (0]0] = "SunPower MIDC",
"DESCR": "HUB+ SYQ1234567890ABCDEF",
"DEVICE_TYPE": "HUB+",
"hw_version": "1.5.0",
"interface": "ttymxc5",
"slave": 220,

"SWVER": "Q.7.22",

"PORT": "P@, Modbus, Slave 220",
"origin": "data_logger",
"OPERATION": "noop",
"CURTIME": "2022,05,26,14,50,32"

Note that this “device” and others described here list “STATE” as “error”. This is most likely

due to the limited test setup. We will work to capture output in the regular state.

Clearly, there is no performance-related data here, so the attribute of most interest would be
the “STATE”.

Detail for EQUINOX-MIO

The MIO is described as a model “SunPower MIO” with device type “ESS Hub. “MIO” stands
for “Multi 1/0.” It is connected to the HUB+ (J1 connector) and possibly to the MIO in other
battery cabinets (J2 connector). Not all functions are clear, but there are connections between
this component and two fans inside the cabinet. It also has CAN bus connections to the
gateway, battery, and LED board (in the door).

The data section generally looks like this:

"ISDETAIL": true,

"SERIAL": "SY01234567890ABCDEF"
"TYPE": "EQUINOX-MIO",

"STATE": "working",
"STATEDESCR": "Working",
"MODEL": "SunPower MIOQ",
"DESCR": "ESS Hub SY01234567890ABCDEF",
"DEVICE_TYPE": "ESS Hub",
"hw_version": "0.4.0",
"interface": "ttymxc5",
"parent": 11,

"slave": 221,

"SWVER" : "9.7.10",

"PORT": "P@, Modbus, Slave 221",
"DATATIME": "2022,05,26,14,50,20",

"t_degc": "36",

"humidity": "20",
"v_dcdc_spply_v": "11.43",
"v_spply_v": "11.364",
"v_gateway_v": "11.419",
"fan_actv_f1": "0",

"fw_error": "Q",

"event_history": "2112",
"origin": "data_logger",
"OPERATION": "noop",

"PARENT": "00001ABC1234_01234567890ABCDEF",
"CURTIME": "2022,05,26,14,50,32"

The performance data seems to include:

= t_degc : External/ambient (to the cabinets, not necessarily outside) temperature in

degrees Celcius.

humidity : External/ambient humidity in percent (0-100)

v_dcdc_spply_v : The DC to DC supply voltage (i.e. what the batteries provide) before

the inverter

= v_spply_v : Another form of supply voltage, unclear to what

v_gateway_v : Voltage to/for the gateway
= fan_actv_f1 : Fan active flag, O for inactive, 1 for active (needs to be verified)
= fw_error : Error count for firmware

= event_history : Count of “events” seen so far

Detail for PV-DISCONNECT

The PV-DISCONNECT is described as a model “SunPower PV Disconnect Relay” with the
device type “PV Disconnect.” It represents the circuitry or functionality that disconnects the PV
system from the grid tie when reverting to battery operation and vice versa when resuming grid
connection. As such, it would be commanded to do so by one of the other system
components.

The data section generally looks like this:

{
"ISDETAIL": true,
"SERIAL": "SY01234567890ABCDEF",
"TYPE": "PV-DISCONNECT",
"STATE": "working",
"STATEDESCR": "Working",
"MODEL": "SunPower PV Disconnect Relay",
"DESCR": "PV Disconnect SYQ1234567890ABCDEF",
"DEVICE_TYPE": "PV Disconnect",
"hw_version": "9.2.0",
"interface": "ttymxc5",
"slave": 230,

"SWVER" : "9.2.13",

"PORT": "P@, Modbus, Slave 230",
"DATATIME": "2022,05,26,14,50,30",

"event_history": "32",
"fw_error": "0",
"relay_mode" : "Q",

"relayl_state": "1",
"relayZ2_state": "1",

"relayl_error": "0",
"relay2_error": "0",
"vlin_grid_v": "123.1",
"v2n_grid_v": "122.5",

"vlin_pv_v": "122.8",

"vZ2n_pv_v": "122.5",

"origin": "data_logger",
"OPERATION": "noop",

"CURTIME": "2022,05,26,14,50,32"

The performance data seems to include:

relay_mode : Flag with 0 suspected meaning utility operations, 1 battery operations
relayl_state : State of relay 1 (0 or 1)

relayl_error : Error count for relay 1

relay2_state : State of relay 2 (0 or 1)

relay2_error : Error count for relay 2

vln_grid_v : Voltage differential between phase 1 neutral and grid

v2n_grid_v : Voltage differential between phase 2 neutral and grid

vln_pv_v : Voltage differential between phase 1 neutral and PV system

v2n_pv_v : Voltage differential between phase 2 neutral and PV system

fw_error : Error count for firmware

= event_history : Count of “events” seen so far

Detail for GATEWAY

The GATEWAY is described as a model “SchneiderElectric-ConextGateway” with the device
type “Gateway.” This product ties together the whole battery system, including the inverter (not
to be confused with the PV micro inverters). It provides an interface for configuration and
performance observations. It also provides a " Modbus " mechanism (Module Bus or Modular

Bus). This interface allows accessing certain components attached to it (you can see this in the
“PORT” specifications for the various device details). This is an RS-485-based serial bus.

The data section generally looks like this:

{
"ISDETAIL": true,
"SERIAL": "BC1234006789",
"TYPE": "GATEWAY",
"STATE": "error",
"STATEDESCR": "Error",
R (0]0] = B "SchneiderElectric-ConextGateway",
"DESCR": "Gateway B(C1234006789",
"DEVICE_TYPE": "Gateway",
"interface": "sunspec",
"mac_address": "d8:a9:ab:cd:12:34",
"slave": 1,
"SWVER" : "V1",
"PORT": "P@, SunSpec, Slave 1",
"origin": "data_logger",
"OPERATION": "noop",
"CURTIME": "2022,05,26,14,50,33"

by

There appears to be no meaningful performance data, outside the communication port
specification.

http://www.modbus.org/

Detail for SCHNEIDER-XWPRO

The SCHNEIDER-XWPRO is described as a model “SchneiderElectric-XW6848-21" with the
device type “Storage Inverter.” This is the DC to AC inverter (and vice versa) used to feed the
backed-up circuits (panel inside the HUB+) during battery-only operations. It converts (what
appears to be a 12V battery) to 120V AC. It also functions as the charger circuitry for the
batteries.

It is a 120/240V/60Hz pure sine wave inverter that can operate in single-phase, split-phase, or

three-phase modes and produce up to 6,800 W of continuous power.

The data section generally looks like this:

{
"ISDETAIL": true,
"SERIAL": "00001ABC1234",
"TYPE": "SCHNEIDER-XWPRO",
"STATE": "error",
"STATEDESCR": "Error",
7 (0]0] 5 "SchneiderElectric-XWe848-21",
"DESCR": "Storage Inverter 00001AB(C1234",
"DEVICE_TYPE": "Storage Inverter",
"interface": "sunspec",
"mac_address": "d8:a9:ab:cd:12:34",
"parent": 11,
"slave": 10,
"SWVER": "vi",
"PORT": "P@, SunSpec, Slave 10",
"origin": "data_logger",
"OPERATION": "noop",
"PARENT": "00001ABC1234_01234567890ABCDEF",
"CURTIME": "2022,05,26,14,50,33"

There appears to be no meaningful performance data outside the communication port
specification.

Detail for EQUINOX-BMS

The EQUINOX-BMS is described as a model “EQUINOX-BMS” with device type “ESS BMS.”
This is the battery management sub-system.

The data section generally looks like this:

{
"ISDETAIL": true,
"SERIAL": "BC123400678933751040" ,
"TYPE": "EQUINOX-BMS",
"STATE": "error",
"STATEDESCR": "Error",
"MODEL": "SchneiderElectric-SP1",
"DESCR": "ESS BMS B(CQ1234567890ABCDEF",
"DEVICE_TYPE": "ESS BMS",
"interface": "sunspec",
"mac_address": "d8:a9:ab:cd:12:34",
"parent": 11,
"slave": 230,
"PORT": "P@, SunSpec, Slave 230",
"origin": "data_logger",
"OPERATION": "noop",
"PARENT": "00001ABC1234_01234567890ABCDEF",
"CURTIME": "2022,05,26,14,50,33"

¥

There is no meaningful performance data outside the communication port specification.

Detail for BATTERY

The BATTERY is described as a model “POWERAMP-Komodo 1.2” (in this particular
installation at least) with the device type “Battery.” This represents an actual battery in the
system, and as such, there may be multiple such entries (in a single cabinet installation, there
are two entries, one for each battery inside the cabinet).

The data section generally looks like this:

{
"ISDETAIL": true,
"SERIAL": "M00122109A0355",
"TYPE": "BATTERY",
"STATE": "error",
"STATEDESCR": "Error",
"MODEL": "POWERAMP-Komodo 1.2",
"DESCR": "Battery M00122109A0355",
"DEVICE_TYPE": "Battery",
"hw_version": "4.34",
"interface": "none",
"parent”: 11,
"SWVER" : "2.8",
"PORT": "P@, None, Slave -1",
"origin": "data_logger",
"OPERATION": "noop",
"PARENT": "00001ABC1234_01234567890ABCDEF",
"CURTIME": "2022,05,26,14,50,34"

}

Note that there is no performance type data, and battery entries only seem to differ in their
serial numbers. The port specification indicates that they are not directly (individually)
addressable. However, information about them might be available through the Modbus system
(via the Gateway or the BMS).

Detail for EQUINOX-ESS

The EQUINOX-ESS is described as a model “SPWR-Equinox-model” with the device type
“Energy Storage System.” It is not clear to me yet what this represents. It seems all other
components comprise the whole system, so perhaps this is just an entry representing the

“whole.”

The data section generally looks like this:

{
"ISDETAIL": true,
"SERIAL": "00001ABC1234_01234567890ABCDEF",
"TYPE": "EQUINOX-ESS",
"STATE": "error",
"STATEDESCR": "Error",
"MODEL": "SPWR-Equinox-model",
"DESCR": "Energy Storage System 00001ABC1234_01234567890ABCDEF",
"DEVICE_TYPE": "Energy Storage System",
"hw_version": "o,
"interface": "none",
"SWVER": "o,
"PORT": "P@, Parent, Slave -1",
"origin": "data_logger",
"OPERATION": "noop",
"CURTIME": "2022,05,26,14,50,35"
ky

Note that there is no performance type data.

GET /cgi-bin/dl_cgi?
Command=Get_Comm&SerialNumber=2T01234567890ABCDEF

This command requires the addition of the serial number. If there are multiple supervisors on
the internal SunPower network, it can select the correct one. The command returns
information about the available network interfaces.

= Body

"result": "succeed",
"networkstatus": {

"interfaces": [{

"interface": wan",

"internet": "down",

"ipaddr": ,
"link": "disconnected",

"mode": "wan",

n n

sms": "unreachable",
"state": "down"

b, {
"interface": "plc",
"internet": "down",
"ipaddr": oy
"link": "disconnected",
"pairing": "unpaired",
"sms": "unreachable",
"speed": Q,
"state": "down"

}, {
"interface": "sta@",
"internet": "up",
"ipaddr": "192.168.10.239",
"signal": "-48",
"sms": "reachable",
"ssid": "Starfield",
"status": "connected"

b, q
"interface": "cell",

"internet": "down",

"ipaddr": ,

"is_alwayson": false,

"is_primary": false,
"link": "connected",
"modem" : "MODEM_OK",
"provider": "UNKNOWN",
"signal": 0,
"sim": "SIM_READY",
"sms": "unreachable",
"state": "DOWN" ,
"status": "NOT_REGISTERED"
i,
"system": {
"interface": "sta@",
"internet": "up",
"sms": "reachable"
}s
"ts": "1635315583"

GET /cgi-bin/dl_cgi?Command=Start

This command starts a configuration session. | am not sure what that means, but | am
guessing it is related to the ability to use this as a REST APl where any changes made using
PUT, POST, and DELETE cannot be done until a session is started version and are not made
permanent until (a) the result is a valid configuration, and (b) the session is “stopped” (see
below).

= Body

"result": "succeed",

"supervisor": {

"SWVER": "2021.9, Build 41001",
"SERIAL": "ZT@1234567890ABCDEF",
"MODEL": "PVS6",

"BUILD": 41001,

"FWVER": "1.0.0",

"SCVER": 16504,

"EASICVER": 131329,
"SCBUILD": 1185,
"WNSERIAL": 16,
"WNMODEL": 400,
"WNVER": 3000

GET /cgi-bin/dl_cgi?Command=Stop
This command stops the configuration session. Not (yet) clear what that is.

= Body

"result": "succeed"

GET /cgi-bin/dl_cgi?Command=CheckFW

This command checks if a firmware update is available. If not, it returns “none,” otherwise, it
returns the URL for the firmware file.

= Body

llurlll: llnonell

GET /cgi-bin/dl_cgi?
Command=DeviceDetails&SeriaINumber=2T01234567890ABCDEF

| found this command mentioned somewhere, but | have not gotten it to work
= Body
{ "result": "unknown command"}
GET /cgi-bin/dl_cgi?Command=GridProfileGet

This command exposes the currently selected/active grid profile (for a full list see the
GridProfileRefresh command).

= Body

{
"result": "succeed",
"active_name": "IEEE-1547a-2014 + 2020 CA Rule2l",
"active_id": "816bf3302d337a42680b996227ddbc46abf9cdd5",
"pending_name": "IEEE-1547a-2014 + 2020 CA Rule2l",
"pending_id": "816bf3302d337a42680b996227ddbc46abf9cdd5",
"percent": 100,
"supported_by": "ALL",
"status": "success"

¥

GET /cgi-bin/dl_cgi?Command=GridProfileRefresh

This command seems to “refresh” in the internal database of supply grid profiles. The profiles
have a unique ID, a descriptive name, refer to a file with metadata about the profile (filename),
and have a list of zip codes (zipcodes) to which it (may) apply.

= Body

{

"result": "succeed",
"success": true,
"creation": 1600704253,
"profiles": [{

"selfsupply": true,
"zipcodes": [{
"max": 96898,
"min": 96701

Il
"default": false,

"filename": "8c9c4170.meta",
"id": "8c9c4170457c88fb6dcee7216357681d580a3b9bd"
"name": "HECO OMH R14H (Legacy)"
F, {
"selfsupply": true,
"zipcodes": [{
"max": 96898,
"min": 96701
H,
"default": false,
"filename": "f169fe@d.meta",
"id": "£169fe@dc993987c5f105df9d651a284e8031c5a",
"name": "HI GSUI OMH R14H 2018"
F, {
"selfsupply": true,
"zipcodes": [{
"max": 96898,

"min": 96701
H,
"default": false,
"filename": "2d8a@6aa.meta",
"id": "2d8a06aa4812913510c7955cabafl14e5432fe67",
"name": "HI GSUI OMH R14H 2018 + V/W"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 96162,
"min": 90001
H,
"default": false,
"filename": "816bf330.meta",
"id": "816bf3302d337a42680b996227ddbc46abf9cddS",
"name": "IEEE-1547a-2014 + 2020 CA Rule2l"
b, {
"selfsupply": false,

"zipcodes": [{

H,
"default": false,

"filename": "db54e@57.meta",
"id": "db54e0571f901db5d7907af561688f0@af555c563d",
"name": "CA CPUC R21 Reactive Power Priority"
b, {
"selfsupply": false,

"zipcodes": [{

Il
"default": false,

"filename": "43daefaa.meta",

"id": "43daefaa4404f4674edd2ad89c175a65f3cebc51",
"name": "California CPUC Rule2l"
b, {

"selfsupply": false,

"zipcodes": [81121, 81122, 81128, 81130, 81137, 81147,
81157, 81235, 81301, 81302, 81303, 81326, 81328, 81329],

"default": false,

"filename": "954a2a24.meta",

"id": "954020240698d9c006afb72fc93febc622b296eb" ,
"name": "La Plata Electric Assn"

F, {
"selfsupply": false,

"zipcodes": [17302, 17309, 17314, 17527, 18014, 18054,
18073, 18074, 18076, 18084, 18901, 18902, 18910, 18912, 18913,
18914, 18915, 18916, 18917, 18922, 18923, 18925, 18926, 18928,
18929, 18931, 18932, 18933, 18934, 18936, 18938, 18940, 18942,
18943, 18944, 18946, 18947, 18949, 18950, 18951, 18954, 18956,
18957, 18958, 18963, 18964, 18966, 18969, 18971, 18974, 18976,
18977, 18979, 18980, 18991, 19001, 19002, 19003, 19004, 19006,
19007, 19008, 19009, 19010, 19012, 19013, 19014, 19015, 19016,
19017, 19018, 19019, 19020, 19021, 19022, 19023, 19025, 19026,
19027, 19028, 19029, 19030, 19031, 19032, 19033, 19034, 19035,
19036, 19037, 19038, 19039, 19040, 19041, 19043, 19044, 19046,
19047, 19048, 19049, 19050, 19052, 19053, 19054, 19055, 19056,
19057, 19058, 19060, 19061, 19063, 19064, 19065, 19066, 19067,
19070, 19072, 19073, 19074, 19075, 19076, 19078, 19079, 19080,
19081, 19082, 19083, 19085, 19086, 19087, 19088, 19089, 19090,
19091, 19092, 19093, 19094, 19095, 19096, 19098, 19099, 19101,
19102, 19103, 19104, 19105, 19106, 19107, 19108, 19109, 19110,
19111, 19112, 19113, 19114, 19115, 19116, 19118, 19119, 19120,
19121, 19122, 19123, 19124, 19125, 19126, 19127, 19128, 19129,
19130, 19131, 19132, 19133, 19134, 19135, 19136, 19137, 19138,
19139, 19140, 19141, 19142, 19143, 19144, 19145, 19146, 19147,
19148, 19149, 19150, 19151, 19152, 19153, 19154, 19155, 19160,

19161, 19162, 19170, 19171, 19172, 19173, 19175, 19176, 19177,
19178, 19179, 19181, 19182, 19183, 19184, 19185, 19187, 19188,
19190, 19191, 19192, 19193, 19194, 19195, 19196, 19197, 19244,
19255, 19301, 19310, 19311, 19312, 19316, 19317, 19318, 19319,
19320, 19330, 19331, 19333, 19335, 19339, 19340, 19341, 19342,
19343, 19344, 19345, 19346, 19347, 19348, 19350, 19351, 19352,
19353, 19354, 19355, 19357, 19358, 19360, 19362, 19363, 19365,
19366, 19367, 19369, 19372, 19373, 19374, 19375, 19376, 19380,
19381, 19382, 19383, 19388, 19390, 19395, 19397, 19398, 19399,
19401, 19403, 19404, 19405, 19406, 19407, 19408, 19409, 19415,
19420, 19421, 19422, 19423, 19424, 19425, 19426, 19428, 19429,
19430, 19432, 19436, 19437, 19438, 19440, 19441, 19442, 19443,
19444, 19446, 19450, 19451, 19453, 19454, 19455, 19456, 19457,
19460, 19462, 19464, 19465, 19468, 19473, 19474, 19475, 19477,
19478, 19480, 19481, 19482, 19484, 19485, 19486, 19490, 19492,
19493, 19494, 19495, 19496, 19520, 19525],

"default": false,

"filename": "8b82ccd2.meta",

"id": "8b82ccd2cfed7c8cc49134fcdcd5edec8845cd5d",

"name": "PECO Voltage Trip High (254V)"

}, {

"selfsupply": false,

"zipcodes": [17302, 17309, 17314, 17527, 18014, 18054,
18073, 18074, 18076, 18084, 18901, 18902, 18910, 18912, 18913,
18914, 18915, 18916, 18917, 18922, 18923, 18925, 18926, 18928,
18929, 18931, 18932, 18933, 18934, 18936, 18938, 18940, 18942,
18943, 18944, 18946, 18947, 18949, 18950, 18951, 18954, 18956,
18957, 18958, 18963, 18964, 18966, 18969, 18971, 18974, 18976,
18977, 18979, 18980, 18991, 19001, 19002, 19003, 19004, 19006,
19007, 19008, 19009, 19010, 19012, 19013, 19014, 19015, 19016,
19017, 19018, 19019, 19020, 19021, 19022, 19023, 19025, 19026,
19027, 19028, 19029, 19030, 19031, 19032, 19033, 19034, 19035,
19036, 19037, 19038, 19039, 19040, 19041, 19043, 19044, 19046,
19047, 19048, 19049, 19050, 19052, 19053, 19054, 19055, 19056,

19057, 19058, 19060, 19061, 19063, 19064, 19065, 19066, 19067,
19070, 19072, 19073, 19074, 19075, 19076, 19078, 19079, 19080,
19081, 19082, 19083, 19085, 19086, 19087, 19088, 19089, 19090,
19091, 19092, 19093, 19094, 19095, 19096, 19098, 19099, 19101,
19102, 19103, 19104, 19105, 19106, 19107, 19108, 19109, 19110,
19111, 19112, 19113, 19114, 19115, 19116, 19118, 19119, 19120,
19121, 19122, 19123, 19124, 19125, 19126, 19127, 19128, 19129,
19130, 19131, 19132, 19133, 19134, 19135, 19136, 19137, 19138,
19139, 19140, 19141, 19142, 19143, 19144, 19145, 19146, 19147,
19148, 19149, 19150, 19151, 19152, 19153, 19154, 19155, 19160,
19161, 19162, 19170, 19171, 19172, 19173, 19175, 19176, 19177,
19178, 19179, 19181, 19182, 19183, 19184, 19185, 19187, 19188,
19190, 19191, 19192, 19193, 19194, 19195, 19196, 19197, 19244,
19255, 19301, 19310, 19311, 19312, 19316, 19317, 19318, 19319,
19320, 19330, 19331, 19333, 19335, 19339, 19340, 19341, 19342,
19343, 19344, 19345, 19346, 19347, 19348, 19350, 19351, 19352,
19353, 19354, 19355, 19357, 19358, 19360, 19362, 19363, 19365,
19366, 19367, 19369, 19372, 19373, 19374, 19375, 19376, 19380,
19381, 19382, 19383, 19388, 19390, 19395, 19397, 19398, 19399,
19401, 19403, 19404, 19405, 19406, 19407, 19408, 19409, 19415,
19420, 19421, 19422, 19423, 19424, 19425, 19420, 19428, 19429,
19430, 19432, 19436, 19437, 19438, 19440, 19441, 19442, 19443,
19444, 19446, 19450, 19451, 19453, 19454, 19455, 19456, 19457,
19460, 19462, 19464, 19465, 19468, 19473, 19474, 19475, 19477,
19478, 19480, 19481, 19482, 19484, 19485, 19486, 19490, 19492,
19493, 19494, 19495, 19496, 19520, 19525],
"default": false,
"filename": "65edfb4c.meta",

"id": "65edfb4c22bc591b1556f910b6d5097df fb30308"
"name": "PECO Voltage Trip High (255V)"

F, q
"selfsupply": false,

"zipcodes": [17302, 17309, 17314, 17527, 18014, 18054,
18073, 18074, 18076, 18084, 18901, 18902, 18910, 18912, 18913,

18914, 18915, 18916, 18917, 18922, 18923, 18925, 18926, 18928,
18929, 18931, 18932, 18933, 18934, 18936, 18938, 18940, 18942,
18943, 18944, 18946, 18947, 18949, 18950, 18951, 18954, 18956,
18957, 18958, 18963, 18964, 18966, 18969, 18971, 18974, 18976,
18977, 18979, 18980, 18991, 19001, 19002, 19003, 19004, 19006,
19007, 19008, 19009, 19010, 19012, 19013, 19014, 19015, 19016,
19017, 19018, 19019, 19020, 19021, 19022, 19023, 19025, 19026,
19027, 19028, 19029, 19030, 19031, 19032, 19033, 19034, 19035,
19036, 19037, 19038, 19039, 19040, 19041, 19043, 19044, 19046,
19047, 19048, 19049, 19050, 19052, 19053, 19054, 19055, 19056,
19057, 19058, 19060, 19061, 19063, 19064, 19065, 19066, 19067,
19070, 19072, 19073, 19074, 19075, 19076, 19078, 19079, 19080,
19081, 19082, 19083, 19085, 19086, 19087, 19088, 19089, 19090,
19091, 19092, 19093, 19094, 19095, 19096, 19098, 19099, 19101,
19102, 19103, 19104, 19105, 19106, 19107, 19108, 19109, 19110,
19111, 19112, 19113, 19114, 19115, 19116, 19118, 19119, 19120,
19121, 19122, 19123, 19124, 19125, 19126, 19127, 19128, 19129,
19130, 19131, 19132, 19133, 19134, 19135, 19136, 19137, 19138,
19139, 19140, 19141, 19142, 19143, 19144, 19145, 19146, 19147,
19148, 19149, 19150, 19151, 19152, 19153, 19154, 19155, 19160,
19161, 19162, 19170, 19171, 19172, 19173, 19175, 19176, 19177,
19178, 19179, 19181, 19182, 19183, 19184, 19185, 19187, 19188,
19190, 19191, 19192, 19193, 19194, 19195, 19196, 19197, 19244,
19255, 19301, 19310, 19311, 19312, 19316, 19317, 19318, 19319,
19320, 19330, 19331, 19333, 19335, 19339, 19340, 19341, 19342,
19343, 19344, 19345, 19346, 19347, 19348, 19350, 19351, 19352,
19353, 19354, 19355, 19357, 19358, 19360, 19362, 19363, 19365,
19366, 19367, 19369, 19372, 19373, 19374, 19375, 19376, 19380,
19381, 19382, 19383, 19388, 19390, 19395, 19397, 19398, 19399,
19401, 19403, 19404, 19405, 19406, 19407, 19408, 19409, 19415,
19420, 19421, 19422, 19423, 19424, 19425, 19426, 19428, 19429,
19430, 19432, 19436, 19437, 19438, 19440, 19441, 19442, 19443,
19444, 19446, 19450, 19451, 19453, 19454, 19455, 19456, 19457,
19460, 19462, 19464, 19465, 19468, 19473, 19474, 19475, 19477,

19478, 19480, 19481, 19482, 19484, 19485, 19486, 19490, 19492,
19493, 19494, 19495, 19496, 19520, 19525],
"default": false,

"filename": "bec6f3ba.meta",
"id": "bec6f3bal3036fea5b7a81b6344308bf40eeacal”,
"name": "PECO Voltage Trip High (260V)"

b, {
"selfsupply": false,

"zipcodes": [17302, 17309, 17314, 17527, 18014, 18054,
18073, 18074, 18076, 18084, 18901, 18902, 18910, 18912, 18913,
18914, 18915, 18916, 18917, 18922, 18923, 18925, 18926, 18928,
18929, 18931, 18932, 18933, 18934, 18936, 18938, 18940, 18942,
18943, 18944, 18946, 18947, 18949, 18950, 18951, 18954, 18956,
18957, 18958, 18963, 18964, 18966, 18969, 18971, 18974, 18976,
18977, 18979, 18980, 18991, 19001, 19002, 19003, 19004, 19006,
19007, 19008, 19009, 19010, 19012, 19013, 19014, 19015, 19016,
19017, 19018, 19019, 19020, 19021, 19022, 19023, 19025, 19026,
19027, 19028, 19029, 19030, 19031, 19032, 19033, 19034, 19035,
19036, 19037, 19038, 19039, 19040, 19041, 19043, 19044, 19046,
19047, 19048, 19049, 19050, 19052, 19053, 19054, 19055, 19056,
19057, 19058, 19060, 19061, 19063, 19064, 19065, 19066, 19067,
19070, 19072, 19073, 19074, 19075, 19076, 19078, 19079, 19080,
19081, 19082, 19083, 19085, 19086, 19087, 19088, 19089, 19090,
19091, 19092, 19093, 19094, 19095, 19096, 19098, 19099, 19101,
19102, 19103, 19104, 19105, 19106, 19107, 19108, 19109, 19110,
19111, 19112, 19113, 19114, 19115, 19116, 19118, 19119, 19120,
19121, 19122, 19123, 19124, 19125, 19126, 19127, 19128, 19129,
19130, 19131, 19132, 19133, 19134, 19135, 19136, 19137, 19138,
19139, 19140, 19141, 19142, 19143, 19144, 19145, 19146, 19147,
19148, 19149, 19150, 19151, 19152, 19153, 19154, 19155, 19160,
19161, 19162, 19170, 19171, 19172, 19173, 19175, 19176, 19177,
19178, 19179, 19181, 19182, 19183, 19184, 19185, 19187, 19188,
19190, 19191, 19192, 19193, 19194, 19195, 19196, 19197, 19244,
19255, 19301, 19310, 19311, 19312, 19316, 19317, 19318, 19319,

19320, 19330, 19331, 19333, 19335, 19339, 19340, 19341, 19342,
19343, 19344, 19345, 19346, 19347, 19348, 19350, 19351, 19352,
19353, 19354, 19355, 19357, 19358, 19360, 19362, 19363, 19365,
19366, 19367, 19369, 19372, 19373, 19374, 19375, 19376, 19380,
19381, 19382, 19383, 19388, 19390, 19395, 19397, 19398, 19399,
19401, 19403, 19404, 19405, 19406, 19407, 19408, 19409, 19415,
19420, 19421, 19422, 19423, 19424, 19425, 19426, 19428, 19429,
19430, 19432, 19436, 19437, 19438, 19440, 19441, 19442, 19443,
19444, 19446, 19450, 19451, 19453, 19454, 19455, 19456, 19457,
19460, 19462, 19464, 19465, 19468, 19473, 19474, 19475, 19477,
19478, 19480, 19481, 19482, 19484, 19485, 19486, 19490, 19492,
19493, 19494, 19495, 19496, 19520, 19525],
"default": false,
"filename": "962c3f8e.meta",
"id": "962c3f8e614e312c5419dc324ae9593c76b4b46c",
"name": "PECO PF (-0.95 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 14999,
"min": 10001
H,
"default": false,
"filename": "ccba@dfe.meta",
"id": "ccba@dfeadbed6f083fca5989cea9340e7b51191",
"name": "NYSEG Freq Trip Low (57Hz)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 14999,
"min": 10001
H,
"default": false,
"filename": "7fdb@bld.meta",

"id": "7fdb@bld2a1f9c483e75197d3b3dd53686d59a53",
"name": "RG&E Freq Trip Low (57Hz)"

b, {
"selfsupply": false,

"zipcodes": [{

H,
"default": true,

"filename": "b88febee.meta",
"id": "b88febeelea30fd3a8ddd9ee840cfde633aed73d",
"name": "IEEE-1547"
F, {
"selfsupply": false,
"zipcodes": [{
"max": 2799,
"min": 1001
H,
"default": false,
"filename": "cc@9cb85.meta",
"id": "cc09cb85389dc96bfdd2557499e7b93f169fa377",
"name": "ISO-NE Ride Through 2018"
b, q
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "cc@9cb85.meta",
"id": "cc09cb85389dc96bfdd2557499e7b93f169fa377",
"name": "ISO-NE Ride Through 2018"

F, {
"selfsupply": false,

"zipcodes": [{
"max": 4999,
"min": 4001
H,
"default": false,
"filename": "cc@9cb85.meta",
"id": "cc@9cb85389dc96bfdd2557499e7b93f169fa377",
"name": "ISO-NE Ride Through 2018"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 3999,
"min": 3001
3,
"default": false,
"filename": "cc@9cb85.meta",
"id": "cc@9cb85389dc96bfdd2557499e7b93f169fa377",
"name": "ISO-NE Ride Through 2018"
F, {
"selfsupply": false,
"zipcodes": [{
"max": 2999,
"min": 2801
H,
"default": false,
"filename": "cc@9cb85.meta",
"id": "cc@9cb85389dc96bfdd2557499e7b93f169fa377",
"name": "ISO-NE Ride Through 2018"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 5999,
"min": 5001
H,

"default": false,

"filename": "cc@9cb85.meta",
"1d": "cc@9cb85389dc96bfdd2557499e7b93f169fa377",
"name": "ISO-NE Ride Through 2018"

¥, q
"selfsupply": false,

"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "48813141.meta",
"id": "4881314181d307d82f5a73db8f@5af3alcldc44e",
"name": "United Illuminating PF (-0.90 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "@4fa2851.meta",
"id": "Q4fa2851cd3cfc7cc218090b6eb3d8ac58005a9¢e"
"name": "United Illuminating PF (-0.91 absorb var)"

F, {
"selfsupply": false,

min

"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "fc43e4fe.meta",
"id": "fc43e4fe8df5ffab5eb67d772b826014d1460090" ,
"name": "United Illuminating PF (-0.92 absorb var)"

b, o
"selfsupply": false,

"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "al2c6eb66.meta",
"id": "a12c6e66467fbbc94badab2cae2aafal3900437f",
"name": "United Illuminating PF (-0.93 absorb var)"
b, q
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "e8bl@eeb.meta",
"id": "e8b10eebf00326ee69b12994043ae5e34fd392d8",
"name": "United Illuminating PF (-0.94 absorb var)"
}, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "6219f2dd.meta",
"id": "6219f2ddc37474cb822f79eb40@425da56d523fb8"
"name": "United Illuminating PF (-0.95 absorb var)"
¥, q
"selfsupply": false,
"zipcodes": [{
"max": 6999,

"min": 6001
H,
"default": false,
"filename": "4f6230b5.meta",
"id": "4f6230b52ec893ad631f69823bf60cec8a332361",
"name": "United Illuminating PF (-0.96 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "ea8e4bde.meta",
"id": "ea8e4b4e31ad9c748b54a7b5d3dofocd53787e6f",
"name": "United Illuminating PF (-0.97 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "Oc68e5e6.meta",
"id": "0c68e5e6c9d4c843fb5afal40c78132134387d7a",
"name": "United Illuminating PF (-0.98 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "3f193060.meta",

"id": "3f1930609e3012ed502868223da845eb0f5637dd"
"name": "United Illuminating PF (-0.99 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "78e96ebc.meta",
"id": "78e96ebc8d19584f3e6858515005d7a894577443" ,
"name": "United Illuminating PF (1.0 Unity)"
F, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "7a72fb68.meta",
"id": "7a72fb68da48cc366c5d3cf493bAabf76e340d65",
"name": "United Illuminating PF (0.90 provide var)"
b, q
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "2da3fdb7.meta",
"id": "2da3fdb7df5aba6aa56bd2914e9ed89670e28082" ,
"name": "United Illuminating PF (@0.91 provide var)"

F, {
"selfsupply": false,

"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "3f7f7d4d.meta",
"id": "3f7f7d4df2a574aa50171558fde4b4abbe8f8152",
"name": "United Illuminating PF (0.92 provide var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
3,
"default": false,
"filename": "67abafcl.meta",
"id": "67abafc148733bbbcf1c2d213299fa83ad123e85",
"name": "United Illuminating PF (0.93 provide var)"
F, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "88706ef5.meta",
"id": "88706ef57c269e9d16bd445fe@bd@cac311ce676",
"name": "United Illuminating PF (@0.94 provide var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
1,

"default": false,
"filename": "1949f47e.meta",
"id": "1949f47e8209187d9089f41ca91fafa572bbf63a",
"name": "United Illuminating PF (@.95 provide var)"
¥, q
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "bcc4a49f.meta",
"id": "bcc4a49f6357904b1f2aac738bd7fac44a4cdfo7",
"name": "United Illuminating PF (0.96 provide var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "c27db8fa.meta",
"id": "c27db8fabaelcc344357bb4364a41c12103aacca”,
"name": "United Illuminating PF (0.97 provide var)"

F, {
"selfsupply": false,

min

"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "b332fcb6b.meta",
"id": "b332fcebl746f3fde2ab23c971e39b79a3a34b69",
"name": "United Illuminating PF (0.98 provide var)"

b, o
"selfsupply": false,

"zipcodes": [{
"max": 6999,
"min": 6001
H,
"default": false,
"filename": "ba5d78f2.meta",
"id": "ba5d78f256d74413036c424da36666004bc72b9b" ,
"name": "United Illuminating PF (0.99 provide var)"

oA

"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001

5,
"default": false,

"filename": "99cd17bl.meta",
"id": "99¢d17b1b41d7953dea2@aab50d0b6302771bd8a" ,
"name": "Xcel Energy PF (-0.90 absorb var)"
}, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "d7e21775.meta",
"id": "d7e217757b64fa8b300cec77b3e@95bc9c6c1269",
"name": "Xcel Energy PF (-0.91 absorb var)"
¥, q
"selfsupply": false,
"zipcodes": [{
"max": 81699,

"min": 80001

H,
"default": false,
"filename": "8e37cfa7.meta",
"id": "8e37cfa7b3d2a7214eba74a8eeabf671fbSef@e7",

"name": "Xcel Energy PF (-0.92 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "41958f46.meta",
"id": "41958f469b9721b2e68e471779e0bf0065f9efb5",
"name": "Xcel Energy PF (-0.93 absorb var)"

b4

"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001

H,
"default": false,

"filename": "fcd@40c2.meta",
"id": "fcd040c2ab28790d88ce358174a3691da2c9db60" ,
"name": "Xcel Energy PF (-0.94 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "d36a869e.meta",

"id": "d36a869eb424e73d36c8b4133592819¢ce89df94d",
"name": "Xcel Energy PF (-0.95 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "4ae@87e9.meta",
"id": "40e087e915460658a614abc48c43d16c89e938fc",
"name": "Xcel Energy PF (-0.96 absorb var)"
F, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "e361783c.meta",
"id": "e361783cb19dc76046f81de9be5614b959e3e217",
"name": "Xcel Energy PF (-0.97 absorb var)"
b, q
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "8@aeebb4.meta",
"id": "80aeebb4b426a3a2520f67a1040fc1b483e3f089",
"name": "Xcel Energy PF (-0.98 absorb var)"

F, {
"selfsupply": false,

"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "2a5becc6.meta",
"id": "2a5becc64606014fc7bfal32ce9cbf00a8102289",
"name": "Xcel Energy PF (-0.99 absorb var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
3,
"default": false,
"filename": "7c23f824.meta",
"id": "7c231824b69a58641851010597e6d7407020db2a"
"name": "Xcel Energy PF (1.0 Unity)"
F, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "a908f0@dc.meta",
"id": "a908f0@dc7ceb5d70dedef20a37ace7a8f1d02a02",
"name": "Xcel Energy PF (0.90 provide var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,

"default": false,
"filename": "e3e54c42.meta",
"id": "e3e54c42084e68c326a774df3f55e093cd917¢c91",
"name": "Xcel Energy PF (0.91 provide var)"
¥, q
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "90e93fd2.meta",
"id": "90e93fd2926de5a4641591bfa433659cbdcaz24dc”,
"name": "Xcel Energy PF (0.92 provide var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "ell4foedb.meta",
"id": "ell4foedbded8129202ff352d1ladde@3b5365b041",
"name": "Xcel Energy PF (0.93 provide var)"

F, {
"selfsupply": false,

min

"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "aac6b45c.meta",
"id": "aacob45cf9cfe41812afe6d8f90ca99f14d54b7a",
"name": "Xcel Energy PF (0.94 provide var)"

b, o
"selfsupply": false,

"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "eb88ba39.meta",
"id": "eb88ba3987f10536bce7eff548953fel746f5a08",
"name": "Xcel Energy PF (0.95 provide var)"

oA

"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001

5,
"default": false,

"filename": "3e2404d4.meta",
"id": "3e2404d455101fec65b656d4014485722772ef02"
"name": "Xcel Energy PF (0.96 provide var)"
}, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "4557857a.meta",
"id": "4557857a86d79ccdeff@lbace91081434f58f930",
"name": "Xcel Energy PF (0.97 provide var)"
¥, q
"selfsupply": false,
"zipcodes": [{
"max": 81699,

"min": 80001
H,
"default": false,
"filename": "241bcb43.meta",
"id": "241bcb432a5cac@9abbe33a8fdedo6f67597a6737",
"name": "Xcel Energy PF (0.98 provide var)"
b, {
"selfsupply": false,
"zipcodes": [{
"max": 81699,
"min": 80001
H,
"default": false,
"filename": "f2963273.meta",

"id": "£2963273ffd35eeb4ec2177dc8bbafa86cd66396",
"name": "Xcel Energy PF (0.99 provide var)"

b,
"selfsupply": false,

"zipcodes": [{
"max": 999999,

H,
"default": false,

"filename": "471080f6.meta",
"id": "4710801f62024d8be88158864c398717c11bb876b",
"name": "IEEE-1547a-2014"

H

GET /cgi-bin/dl_cgi?Command=GetCellPurchased

This command determines (it looks like) whether the customer has purchased cellular based
data access to this monitoring system.

= Body

{ "cell_purchased": "null"}

GET /cgi-bin/dl_cgi?Command=GetDiscoveryProgress

This command shows the progress status of the device discovery process. In the example
below, it shows that the discovery of micro inverters is 100% done, and none (new) were
found. Since the progress is an array, | imagine other kinds of discovery may be reported here

as well (probably only during commissioning or changing the system setup).

= Body
{
"progress": [{
"TYPE": "Microlnverters",
"PROGR": "100",
"NFOUND" : "o"
B
"complete": true,
"result": "succeed"
ks

GET /cgi-bin/dl_cgi?
Command=SetCellPurchased&SerialNumber=27T01234567890ABCDEF

This command sets the purchase status of cellular data support. If done using a GET, you get
the result below. To actually make a change, it may be necessary to issue a POST command
with a body, and that probably needs to happen inside an active session.

= Body

"cell_purchased": "null",
"result": "succeed"
}
Alternative API

Reportedly it is also possible to retrieve information from the Cloud-based SunPower servers.
The reported URL is “https://elhapi.edp.sunpower.com/vl/elh/address/<address
id>/components where < address id> is a system-specific 6-digit code for your system.
You can discover the correct code by using the regular portal, setting your browser in
developer mode, and looking in the “network” tab. You will be able to see the code and data
that flows.

| was not able to replicate the above, but in my situation, using the same developer tools
approach | saw a call to https://edp-api-graphql.edp.sunpower.com/graphql . It appears
that with the request, a body needs to be sent. It looks like this:

"operationName": "FetchPartyData",
"variables": {
"partyId": "<a UUID>"
i
"query": "query FetchPartyData($partyld: String!) {\n party(partyld:
$partyId) {\n partyId\n displayName\n email\n phone\n

sites {\n siteKey\n hasWifi\n hasLivedata\n
siteName\n siteType\n addressl1\n city\n state\n
postalCode\n systemSize\n commissioningDate\n timezone\n
currentWeather {\n sunrise\n sunset\n dateTime\n
__typename\n N\n battery {\n operationMode\n
backUpReserveSocLevel\n backupTimeLeft {\n formatted
{\n days\n hours\n minutes\n
__typename\n N\n __typename\n N\n
socAndChargeCapacity {\n customerStateOfCharge\n
stateOfChargePercentage\n __typename\n N\n
__typename\n N\n assignments(assignmentType: COMMISSION) {\n
deviceSerialNumber\n deviceType\n deviceKey\n
assignmentEffectiveTimestamp\n devices(deviceType: \"logger\",
deviceStatus: true) {\n dvcKey\n comProto\n
__typename\n \n __typename\n \n __typename\n
\n __typename\n }\n}\n"
by
]

Notice that it basically sends a data query, identifying the “party” for which data is needed
using a “UUID.” | have not investigated how to find this number, but of course, you can look at
this data once and write it down. It is unique for your installation and won’t change.

The response looks like this (lots of inverter entries removed):

[{

"data": {
"party": {
"partyId": "<UUID>",
"displayName": "<your name here>",
"email": "user@gmail.com",

"phone": null,

"sites": [{
"siteKey": "E_1234",
"hasWifi": true,

"hasLivedata": true,

"siteName": "Dolf Starreveld Residence",
"siteType": "production",

"addressl1l": "<real address here>",
"city": "<city here>",

"state": "CA",

"postalCode": "<zip here>",

"systemSize": 8640,
"commissioningDate": "2021-10-14T17:10:50",
"timezone": "America/Los_Angeles",
"currentWeather": {
"sunrise": 1635431362,
"sunset": 1635470052,
"dateTime": 1635445811,
"__typename": "CurrentWeather"
s
"battery": {
"operationMode": null,
"backUpReserveSocLevel": null,
"backupTimelLeft": null,
"socAndChargeCapacity": null,
"__typename": "Battery"
¥

"assignments": [{

"deviceSerialNumber": "ZT213585000549A0748",
"deviceType": "DATALOGGER",
"deviceKey":

"7T01234567890ABCDEF_ZT01234567890ABCDEF_PV SUPERVISOR PVS6",

"assignmentEffectiveTimestamp": "2021-10-
15T00:10:50.120Z",

"devices": [{
"dvcKey" :
"ZT01234567890ABCDEF_Z2T01234567890ABCDEF_PV Supervisor PVS6",
"comProto": "MQTT",
"__typename": "Device"
H,
"__typename": "Assignment"
H,
"__typename": "Site"

H,
"__typename": "Party"

H

Without explaining everything here, this is basic site/party data and identifies the supervisor

device only. This device apparently communicates back to SunPower using the MQTT
protocol.

Another request fetches alerts (FetchAlerts) and produces:

[{
"data": {
"site": {
"siteKey": "E_1234",
"alerts": [{

"alertType": "CommunicationOutagelInverterICE",

"alertStatus": "Open",
"eventTimestamp": "2021-10-21T02:27:58-07:00",
"__typename": "Alert"
P, 1
"alertType": "CommunicationOutagelInverterICE",
"alertStatus": "Open",
"eventTimestamp": "2021-10-21T02:27:59-07:00",
"__typename": "Alert"
H,
"assignments": [{
"deviceSerialNumber": "ZT01234567890ABCDEF",
"devices": [{
"dvcKey": "ZT01234567890ABCDEF_ZT01234567890ABCDEF_PV
Supervisor PVS6",
"prodMdlNm": "PV Supervisor PVS6",
"lastRcvdEps": 1635447600,
"meterType": null,
"__typename": "Device"
F, {
"dvcKey" :
"ZT01234567890ABCDEF_E00122125120472_AC_Module_Type_E",
"prodMdlNm": "AC_Module_Type_E",
"lastRcvdEps": 1634679600,
"meterType": null,
"__typename": "Device"
b, {
"dvcKey":
"ZT01234567890ABCDEF_PVSEM12345678p_PVS6M0400p" ,
"prodMd1lNm": "PVS6M0400p",
"lastRcvdEps": 1635446700,
"meterType": {
"type": "GROSS_PRODUCTION",
"level": "1",

"__typename": "MeterType"

1

"__typename": "Device"
F, {
"dvcKey":
"ZT01234567890ABCDEF_PVSEM12345678c_PVS6M0400c"
"prodMdlNm": "PVSEM0400c",
"lastRcvdEps": 1635446700,
"meterType": {
"type": "NOT_USED",
"level": "Q",

"__typename": "MeterType"

s
"__typename": "Device"
H,
"__typename": "Assignment"
H,
"__typename": "Site"
¥
ky
o
"data": {
"site": {

"hasWifi": true,
"siteKey": "E_1234",
"assignments": [{
"assignmentType": "COMMISSION",
"deviceSerialNumber": "ZT@1234567890ABCDEF",
"assignmentEffectiveTimestamp": "2021-10-
15T00:10:50.1202",
"devices": [{
"dvcKey": "ZTQ1234567890ABCDEF_ZT01234567890ABCDEF_PV
Supervisor PVS6",
"dvcTy": "logger",
"prodMdlNm": "PV Supervisor PVS6",

"lastRcvdEps": 1635447000,
"deviceStatus": {
"pvStatus": true,
"essStatus": false,
"netIntfRptCtnt": {
"currNetIntfEnum": "STAQ",

"__typename": "NetworkInterfaceReport"
s
"__typename": "DeviceStatus"
s
"__typename": "Device"
H,
"__typename": "Assignment"
H,
"__typename": "Site"
¥
¥
Fo 1
"data": {

"environmentalSavings": {

"costSaving": null,

"co2": {

"value": 0,

"unit": "Pounds",

"__typename": "EnvironmentalSavingsItem"
s
"tree": {

"value": 0,

"unit": "Trees",

"__typename": "EnvironmentalSavingsItem"
}s
"mile": {

"value": 0,

"unit": "Miles",

"__typename": "EnvironmentalSavingsItem"

}s
"gas": {
"value": 0,
"unit": "Gallons",
"__typename": "EnvironmentalSavingsItem"
}s
"__typename": "EnvironmentalSavings"
by
ky
¥, 1
"data": {
"energy": {

"energyDataSeries": {

"production”: [

1,

"con

1,

["2021-10-28T00:
["2021-10-28T01:
["2021-10-28T02:

// more omitted

sumption": [

["2021-10-28T00:
["2021-10-28T01:
["2021-10-28T02:

// more omitted

"storage": [

1,

"gri

["2021-10-28T00:
["2021-10-28T01:
["2021-10-28T02:

// more omitted

d': [

["2021-10-28T00:

00:
00:
00:

00:
00:
00:

00:
00:
00:

00:

@0 n ,
@@ n ,
@@ " ,

00",
@@ n ,
@@ " ,

00",
@0 n ,
@@ n ,

@@" ,

ll@ll ,
H@ll ,
ll@" ,

ll@ll ,
ll@ll ,
ll@" ,

ll@ll ,
ll@ll ,
ll@ll ,

H@ll ,

"0,
8],
"0,

"100"],
L1 1@@"] ,
" 10@"] ,

"100"],
" 1@@"] ,
" 10@"]

0",

["2021-10-28T01:00:00", "0", "0"],
["2021-10-28T02:00:00", "0", "0"],
// more omitted

1,

"__typename": "DataSeries"
s
"totalProduction": @,
"totalConsumption": @,
"energyMixPercentage": 0,
"totalGridImport": 0,
"totalGridExport": 0,
"netGridImportExport": 0,
"totalStorageCharged": 0,
"totalStorageDischarged": 0,
"netStorageChargedDischarged": 0,

"__typename": "Energy"

¥
¥
¥, 4
"data": {
"power": {
"powerDataSeries": {
// Formatted as above
"__typename": "DataSeries"
}s
"__typename": "Power"
by
by

H

You will note that a lot of information is available here as well. It may, however, be subject to
data aggregation in an interval longer than the frequency with which data changes when you

directly query the PVS6 system.

You can see that the data in the site section (may) contains “Alerts” (containing a type, status,
and time stamp in ISO format), while “Assignments” seem to list all known devices that belong
to the “site.”

Another command is FetchPowerData . It appears to return time series data for plotting power

and energy graphs.

Since | am not using this approach, this is as far as | will take the documentation.

Log contents

By browsing to http://sunpowerconsole.com:19531, you will be presented with an interface

that allows you to inspect internal log messages on the PVS. It is pretty basic and looks like
this:

At the present time (May 2024), a bug related to this logging can cause your PVS system to
stop uploading data to the Sunpower “mothership.” The consequence is that the
“mySunPower” app and portal stop displaying analysis information until the situation is
resolved. SunPower has confirmed this bug, which is essentially a bug in the firmware that
should be fixed. No promises have been provided if and or when this may happen.

One cause for this bug that has been identified and acknowledged is a situation in which, for
one reason or another, the PVS is not successfully uploading buffered (on its local file system)
so-called “splunks,” causing the local storage to become full. This condition then causes
further logging to fail and has the side effect of stopping the regular data uploads as well. One
known condition that can cause this situation is an interruption of Internet connectivity for the
PVS (via your WiFi or cable). If this period is long enough for the log storage to fill up, the
problem occurs. If you are deploying the solutions described in this document and frequently
request the device list data, this can happen rather quickly as the full content of the response
is logged.

http://sunpowerconsole.com:19531/

Unfortunately, a power cycle reboot will not clear the condition, and at least one user involved
in discovering this has had to have their PVS system replaced to fix the issue. | have had long
periods of no reporting to Sunpower, which, at seemingly random times, resolved themselves.
One such time, | used the installer interface (which is no longer working) and noticed a failed
firmware upgrade. | initiated that upgrade, and after that, the reporting functionality also
resumed. | believe any firmware update can resolve the situation as it appears to clear the
necessary storage areas, but | have not been able to confirm this positively.

	Monitoring a solar installation by tapping into a SunPower PVS5 or PVS6
	DISCLAIMER:
	Introduction
	New Sunstrong related information (11/10/25)
	The new local monitoring API
	Authentication
	Swagger (old API)

	Homeassistant plugins
	Other Resources

	The PVS6 system
	PVS6 with SunVault battery system (ESS)

	Setting up the Raspberry
	Prepare the software on the Raspberry
	Setup networking
	Setup networking to access the PVS6
	Install the Raspberry inside/along the PVS6 system
	Testing

	Instructions for cabled connection
	Using an (old) intermediary router
	Using your regular router with extra port

	What about no Ethernet ports available on PVS?
	Hooking up RS485/Modbus hardware
	Nihar Meta’s Setup

	Integrating with Homeassistant
	Other integrations
	API information
	GET /cgi-bin/dl_cgi?Command=DeviceList
	Detail for supervisor
	Detail for power meter
	Detail for micro inverter
	Additional devices for battery equipped systems
	Detail for HUB+
	Detail for EQUINOX-MIO
	Detail for PV-DISCONNECT
	Detail for GATEWAY
	Detail for SCHNEIDER-XWPRO
	Detail for EQUINOX-BMS
	Detail for BATTERY
	Detail for EQUINOX-ESS

	GET /cgi-bin/dl_cgi?Command=Get_Comm&SerialNumber=ZT01234567890ABCDEF
	GET /cgi-bin/dl_cgi?Command=Start
	GET /cgi-bin/dl_cgi?Command=Stop
	GET /cgi-bin/dl_cgi?Command=CheckFW
	GET /cgi-bin/dl_cgi?Command=DeviceDetails&SerialNumber=ZT01234567890ABCDEF
	GET /cgi-bin/dl_cgi?Command=GridProfileGet
	GET /cgi-bin/dl_cgi?Command=GridProfileRefresh
	GET /cgi-bin/dl_cgi?Command=GetCellPurchased
	GET /cgi-bin/dl_cgi?Command=GetDiscoveryProgress
	GET /cgi-bin/dl_cgi?Command=SetCellPurchased&SerialNumber=ZT01234567890ABCDEF

	Alternative API
	Log contents

